skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-Driven Computational Methods for Quasi-Stationary Distribution and Sensitivity Analysis
This paper studies computational methods for quasi-stationary distributions (QSDs). We first proposed a data-driven solver that solves Fokker–Planck equations for QSDs. Similar to the case of Fokker–Planck equations for invariant probability measures, we set up an optimization problem that minimizes the distance from a low-accuracy reference solution, under the constraint of satisfying the linear relation given by the discretized Fokker–Planck operator. Then we use coupling method to study the sensitivity of a QSD against either the change of boundary condition or the diffusion coefficient. The 1-Wasserstein distance between a QSD and the corresponding invariant probability measure can be quantitatively estimated. Some numerical results about both computation of QSDs and their sensitivity analysis are provided.  more » « less
Award ID(s):
2108628
PAR ID:
10345334
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Dynamics and Differential Equations
ISSN:
1040-7294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We revisit the variational characterization of conservative di↵usion as entropic gra- dient flow and provide for it a probabilistic interpretation based on stochastic calculus. It was shown by Jordan, Kinderlehrer, and Otto that, for diffusions of Langevin–Smoluchowski type, the Fokker–Planck probability density flow maximizes the rate of relative entropy dissipation, as mea- sured by the distance traveled in the ambient space of probability measures with finite second moments, in terms of the quadratic Wasserstein metric. We obtain novel, stochastic-process ver- sions of these features, valid along almost every trajectory of the dffusive motion in the backwards direction of time, using a very direct perturbation analysis. By averaging our trajectorial results with respect to the underlying measure on path space, we establish the maximal rate of entropy dissipation along the Fokker–Planck flow and measure exactly the deviation from this maximum that corresponds to any given perturbation. A bonus of our trajectorial approach is that it derives the HWI inequality relating relative entropy (H), Wasserstein distance (W), and relative Fisher information (I). 
    more » « less
  2. Wasserstein gradient flows provide a powerful means of understanding and solving many diffusion equations. Specifically, Fokker-Planck equations, which model the diffusion of probability measures, can be understood as gradient descent over entropy functionals in Wasserstein space. This equivalence, introduced by Jordan, Kinderlehrer and Otto, inspired the so-called JKO scheme to approximate these diffusion processes via an implicit discretization of the gradient flow in Wasserstein space. Solving the optimization problem associated with each JKO step, however, presents serious computational challenges. We introduce a scalable method to approximate Wasserstein gradient flows, targeted to machine learning applications. Our approach relies on input-convex neural networks (ICNNs) to discretize the JKO steps, which can be optimized by stochastic gradient descent. Contrarily to previous work, our method does not require domain discretization or particle simulation. As a result, we can sample from the measure at each time step of the diffusion and compute its probability density. We demonstrate the performance of our algorithm by computing diffusions following the Fokker-Planck equation and apply it to unnormalized density sampling as well as nonlinear filtering. 
    more » « less
  3. Bressan, A; Lewicka, M; Wang, D.; Zheng, Y.X. (Ed.)
    In this paper we review the algorithm development in high order methods for some conservation laws. The emphasis is on our recent contribution in the study of two model classes: Fokker-Planck-type equations and hyperbolic conservation law systems. For the former we will review free-energy-satisfying and positivity-preserving schemes. For the later we will review the general invariant-region-preserving (IRP) limiter, and its application to high order methods for multi-dimensional hyperbolic systems of conservation laws. 
    more » « less
  4. Abstract Noise or fluctuations play an important role in the modeling and understanding of the behavior of various complex systems in nature. Fokker–Planck equations are powerful mathematical tools to study behavior of such systems subjected to fluctuations. In this paper we establish local well-posedness result of a new nonlinear Fokker–Planck equation. Such equations appear in the modeling of the grain boundary dynamics during microstructure evolution in the polycrystalline materials and obey special energy laws. 
    more » « less
  5. Joan Bruna, Jan S (Ed.)
    The time evolution of the probability distribution of a stochastic differential equation follows the Fokker-Planck equation, which usually has an unbounded, high-dimensional domain. Inspired by Li (2019), we propose a mesh-free Fokker-Planck solver, in which the solution to the Fokker-Planck equation is now represented by a neural network. The presence of the differential operator in the loss function improves the accuracy of the neural network representation and reduces the demand of data in the training process. Several high dimensional numerical examples are demonstrated. 
    more » « less