skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extracytoplasmic Function Sigma Factors Governing Production of the Primary Siderophores in Pathogenic Burkholderia Species
Bacteria respond to changing environments by modulating their gene expression programs. One of the mechanisms by which this may be accomplished is by substituting the primary σ factor with an alternative σ factor belonging to the family of extracytoplasmic function (ECF) σ factors. ECF σ factors are activated only in presence of specific signals, and they direct the RNA polymerase (RNAP) to transcribe a defined subset of genes. One condition, which may trigger the activation of an ECF σ factor, is iron limitation. To overcome iron starvation, bacteria produce and secrete siderophores, which chelate iron and facilitate its cellular uptake. In the genus Burkholderia , which includes several serious human pathogens, uptake of iron is critical for virulence, and expression of biosynthetic gene clusters encoding proteins involved in synthesis and transport of the primary siderophores are under control of an ECF σ factor. This review summarizes mechanisms involved in regulation of these gene clusters, including the role of global transcriptional regulators. Since siderophore-mediated iron acquisition is important for virulence, interference with this process constitutes a viable approach to the treatment of bacterial infections.  more » « less
Award ID(s):
1714219
PAR ID:
10345349
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
13
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Comstock, Laurie E. (Ed.)
    ABSTRACT Burkholderia thailandensis is a member of the Burkholderia pseudomallei complex. It encodes the transcription factor MftR, which is conserved among the more pathogenic Burkholderia spp. and previously shown to be a global regulator of gene expression. We report here that a B. thailandensis strain in which the mftR gene is disrupted is more virulent in both Caenorhabditis elegans and onion. The Δ mftR strain exhibits a number of phenotypes associated with virulence. It is more proficient at forming biofilm, and the arcDABC gene cluster, which has been linked to anaerobic survival and fitness within a biofilm, is upregulated. Swimming and swarming motility are also elevated in Δ mftR cells. We further show that MftR is one of several transcription factors which control production of the siderophore malleobactin. MftR binds directly to the promoter driving expression of mbaS , which encodes the extracytoplasmic function sigma factor MbaS that is required for malleobactin production. Malleobactin is a primary siderophore in B. thailandensis as evidenced by reduced siderophore production in mbaS ::Tc cells, in which mbaS is disrupted. Expression of mbaS is increased ~5-fold in Δ mftR cells, and siderophore production is elevated. Under iron-limiting conditions, mbaS expression is increased ~150-fold in both wild-type and Δ mftR cells, respectively, reflecting regulation by the ferric uptake regulator (Fur). The mbaS expression profiles also point to repression by a separate, ligand-responsive transcription factor, possibly ScmR. Taken together, these data indicate that MftR controls a number of phenotypes, all of which promote bacterial survival in a host environment. IMPORTANCE Bacterial pathogens face iron limitation in a host environment. To overcome this challenge, they produce siderophores, small iron-chelating molecules. Uptake of iron-siderophore complexes averts bacterial iron limitation. In Burkholderia spp., malleobactin or related compounds are the primary siderophores. We show here that genes encoding proteins required for malleobactin production in B. thailandensis are under the direct control of the global transcription factor MftR. Repression of gene expression by MftR is relieved when MftR binds xanthine, a purine metabolite present in host cells. Our work therefore identifies a mechanism by which siderophore production may be optimized in a host environment, thus contributing to bacterial fitness. 
    more » « less
  2. null (Ed.)
    Pseudomonas syringae can rapidly deploy specialized functions to deal with abiotic and biotic stresses. Host niches pose specific sets of environmental challenges driven in part by immune defenses. Bacteria use a “just-in-time” strategy of gene regulation, meaning that they only produce the functions necessary for survival as needed. Extracytoplasmic function (ECF) sigma factors transduce a specific set of environmental signals and change gene expression patterns by altering RNAP promoter specificity, to adjust bacterial physiology, structure, and/or behavior to improve chances of survival. The broadly conserved ECF sigma factor, AlgU, affects virulence in both animal and plant pathogens. Pseudomonas syringae AlgU controls expression of more than 800 genes, some of which contribute to suppression of plant immunity and bacterial fitness in plants. This review discusses AlgU activation mechanisms, functions controlled by AlgU, and how these functions contribute to P. syringae survival in plants. 
    more » « less
  3. Becker, Anke (Ed.)
    ABSTRACT Plant pathogenic bacteria encounter a drastic increase in apoplastic pH during the early stages of plant immunity. The effects of alkalization on pathogen-host interactions have not been comprehensively characterized. Here, we used a global transcriptomic approach to assess the impact of environmental alkalization onPseudomonas syringaepv.tomatoDC3000in vitro. In addition to the Type 3 Secretion System, we found expression of genes encoding other virulence factors such as iron uptake and coronatine biosynthesis to be strongly affected by environmental alkalization. We also found that the activity of AlgU, an important regulator of virulence gene expression, was induced at pH 5.5 and suppressed at pH 7.8, which are pH levels that this pathogen would likely experience before and during pattern-triggered immunity, respectively. This pH-dependent control requires the presence of periplasmic proteases, AlgW and MucP, that function as part of the environmental sensing system that activates AlgU in specific conditions. This is the first example of pH-dependency of AlgU activity, suggesting a regulatory pathway model where pH affects the proteolysis-dependent activation of AlgU. These results contribute to deeper understanding of the role apoplastic pH has on host-pathogen interactions.IMPORTANCEPlant pathogenic bacteria, likePseudomonas syringae, encounter many environmental changes including oxidative stress and alkalization during plant immunity, but the ecological effects of the individual responses are not well understood. In this study, we found that transcription of many previously characterized virulence factors inP. syringaepv.tomatoDC3000 is downregulated by the level of environmental alkalization these bacteria encounter during the early stages of plant immune activation. We also report for the first time the sigma factor AlgU is post-translationally activated by low environmental pH through its natural activation pathway, which partially accounts for the expression Type 3 Secretion System virulence genes at acidic pH. The results of this study demonstrate the importance of extracellular pH on global regulation of virulence-related gene transcription in plant pathogenic bacteria. 
    more » « less
  4. Abstract Siderophores are strong iron‐binding molecules produced and utilized by microbes to acquire the limiting nutrient iron (Fe) from their surroundings. Despite their importance as a component of the iron‐binding ligand pool in seawater, data on the distribution of siderophores and the microbes that use them are limited. Here, we measured the concentrations and types of dissolved siderophores during two cruises in April 2016 and June 2017 that transited from the iron‐replete, low‐macronutrient North Pacific Subtropical Gyre through the North Pacific Transition Zone (NPTZ) to the iron‐deplete, high‐macronutrient North Pacific Subarctic Frontal Zone (SAFZ). Surface siderophore concentrations in 2017 were higher in the NPTZ (4.0–13.9 pM) than the SAFZ (1.2–5.1 pM), which may be partly attributed to stimulated siderophore production by environmental factors such as dust‐derived iron concentrations (up to 0.51 nM). Multiple types of siderophores were identified on both cruises, including ferrioxamines, amphibactins, and iron‐free forms of photoreactive siderophores, which suggest active production and use of diverse siderophores across latitude and depth. Siderophore biosynthesis and uptake genes and transcripts were widespread across latitude, and higher abundances of these genes and transcripts at higher latitudes may reflect active siderophore‐mediated iron uptake by the local bacterial community across the North Pacific. The variability in the taxonomic composition of bacterial communities that transcribe putative ferrioxamine, amphibactin, and salmochelin transporter genes at different latitudes further suggests that the microbial groups involved in active siderophore production and usage change depending on local conditions. 
    more » « less
  5. Abstract The North Pacific subtropical gyre is a globally important contributor to carbon uptake despite being a persistently oligotrophic ecosystem. Supply of the micronutrient iron to the upper ocean varies seasonally to episodically, and when coupled with rapid biological consumption, results in low iron concentrations. In this study, we examined changes in iron uptake rates, along with siderophore concentrations and biosynthesis potential at Station ALOHA across time (2013–2016) and depth (surface to 500 m) to observe changes in iron acquisition and internal cycling by the microbial community. The genetic potential for siderophore biosynthesis was widespread throughout the upper water column, and biosynthetic gene clusters peaked in spring and summer along with siderophore concentrations, suggesting changes in nutrient delivery, primary production, and carbon export seasonally impact iron acquisition. Dissolved iron turnover times, calculated from iron‐amended experiments in surface (15 m) and mesopelagic (300 m) waters, ranged from 9 to 252 d. The shortest average turnover times at both depths were associated with inorganic iron additions (14  9 d) and the longest with iron bound to strong siderophores (148  225 d). Uptake rates of siderophore‐bound iron were faster in mesopelagic waters than in the surface, leading to high Fe : C uptake ratios of heterotrophic bacteria in the upper mesopelagic. The rapid cycling and high demand for iron at 300 m suggest differences in microbial metabolism and iron acquisition in the mesopelagic compared to surface waters. Together, changes in siderophore production and consumption over the seasonal cycle suggest organic carbon availability impacts iron cycling at Station ALOHA. 
    more » « less