skip to main content


Title: Extracytoplasmic Function Sigma Factors Governing Production of the Primary Siderophores in Pathogenic Burkholderia Species
Bacteria respond to changing environments by modulating their gene expression programs. One of the mechanisms by which this may be accomplished is by substituting the primary σ factor with an alternative σ factor belonging to the family of extracytoplasmic function (ECF) σ factors. ECF σ factors are activated only in presence of specific signals, and they direct the RNA polymerase (RNAP) to transcribe a defined subset of genes. One condition, which may trigger the activation of an ECF σ factor, is iron limitation. To overcome iron starvation, bacteria produce and secrete siderophores, which chelate iron and facilitate its cellular uptake. In the genus Burkholderia , which includes several serious human pathogens, uptake of iron is critical for virulence, and expression of biosynthetic gene clusters encoding proteins involved in synthesis and transport of the primary siderophores are under control of an ECF σ factor. This review summarizes mechanisms involved in regulation of these gene clusters, including the role of global transcriptional regulators. Since siderophore-mediated iron acquisition is important for virulence, interference with this process constitutes a viable approach to the treatment of bacterial infections.  more » « less
Award ID(s):
1714219
NSF-PAR ID:
10345349
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
13
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Comstock, Laurie E. (Ed.)
    ABSTRACT Burkholderia thailandensis is a member of the Burkholderia pseudomallei complex. It encodes the transcription factor MftR, which is conserved among the more pathogenic Burkholderia spp. and previously shown to be a global regulator of gene expression. We report here that a B. thailandensis strain in which the mftR gene is disrupted is more virulent in both Caenorhabditis elegans and onion. The Δ mftR strain exhibits a number of phenotypes associated with virulence. It is more proficient at forming biofilm, and the arcDABC gene cluster, which has been linked to anaerobic survival and fitness within a biofilm, is upregulated. Swimming and swarming motility are also elevated in Δ mftR cells. We further show that MftR is one of several transcription factors which control production of the siderophore malleobactin. MftR binds directly to the promoter driving expression of mbaS , which encodes the extracytoplasmic function sigma factor MbaS that is required for malleobactin production. Malleobactin is a primary siderophore in B. thailandensis as evidenced by reduced siderophore production in mbaS ::Tc cells, in which mbaS is disrupted. Expression of mbaS is increased ~5-fold in Δ mftR cells, and siderophore production is elevated. Under iron-limiting conditions, mbaS expression is increased ~150-fold in both wild-type and Δ mftR cells, respectively, reflecting regulation by the ferric uptake regulator (Fur). The mbaS expression profiles also point to repression by a separate, ligand-responsive transcription factor, possibly ScmR. Taken together, these data indicate that MftR controls a number of phenotypes, all of which promote bacterial survival in a host environment. IMPORTANCE Bacterial pathogens face iron limitation in a host environment. To overcome this challenge, they produce siderophores, small iron-chelating molecules. Uptake of iron-siderophore complexes averts bacterial iron limitation. In Burkholderia spp., malleobactin or related compounds are the primary siderophores. We show here that genes encoding proteins required for malleobactin production in B. thailandensis are under the direct control of the global transcription factor MftR. Repression of gene expression by MftR is relieved when MftR binds xanthine, a purine metabolite present in host cells. Our work therefore identifies a mechanism by which siderophore production may be optimized in a host environment, thus contributing to bacterial fitness. 
    more » « less
  2. null (Ed.)
    Pseudomonas syringae can rapidly deploy specialized functions to deal with abiotic and biotic stresses. Host niches pose specific sets of environmental challenges driven in part by immune defenses. Bacteria use a “just-in-time” strategy of gene regulation, meaning that they only produce the functions necessary for survival as needed. Extracytoplasmic function (ECF) sigma factors transduce a specific set of environmental signals and change gene expression patterns by altering RNAP promoter specificity, to adjust bacterial physiology, structure, and/or behavior to improve chances of survival. The broadly conserved ECF sigma factor, AlgU, affects virulence in both animal and plant pathogens. Pseudomonas syringae AlgU controls expression of more than 800 genes, some of which contribute to suppression of plant immunity and bacterial fitness in plants. This review discusses AlgU activation mechanisms, functions controlled by AlgU, and how these functions contribute to P. syringae survival in plants. 
    more » « less
  3. Champion, Patricia A. (Ed.)
    ABSTRACT The molecular machine necessary for protein synthesis, the ribosome, is generally considered constitutively functioning and lacking any inherent regulatory capacity. Yet ribosomes are commonly heterogeneous in composition and the impact of ribosome heterogeneity on translation is not well understood. Here, we determined that changes in ribosome protein composition govern gene expression in the intracellular bacterial pathogen Francisella tularensis . F. tularensis encodes three distinct homologs for bS21, a ribosomal protein involved in translation initiation, and analysis of purified F. tularensis ribosomes revealed they are heterogeneous with respect to bS21. The loss of one homolog, bS21-2, resulted in significant changes to the cellular proteome unlinked to changes in the transcriptome. Among the reduced proteins were components of the type VI secretion system (T6SS), an essential virulence factor encoded by the Francisella Pathogenicity Island. Furthermore, loss of bS21-2 led to an intramacrophage growth defect. Although multiple bS21 homologs complemented the loss of bS21-2 with respect to T6SS protein abundance, bS21-2 was uniquely necessary for robust intramacrophage growth, suggesting bS21-2 modulates additional virulence gene(s) distinct from the T6SS. Our results indicate that ribosome composition in F. tularensis , either directly or indirectly, posttranscriptionally modulates gene expression and virulence. Our findings are consistent with a model in which bS21 homologs function as posttranscriptional regulators, allowing preferential translation of specific subsets of mRNAs, likely at the stage of translation initiation. This work also raises the possibility that bS21 in other organisms may function similarly and that ribosome heterogeneity may permit many bacteria to posttranscriptionally regulate gene expression. IMPORTANCE While bacterial ribosomes are commonly heterogeneous in composition (e.g., incorporating different homologs for a ribosomal protein), how heterogeneity impacts translation is unclear. We found that the intracellular human pathogen Francisella tularensis has heterogeneous ribosomes, incorporating one of three homologs for ribosomal protein bS21. Furthermore, one bS21 homolog posttranscriptionally governs the expression of the F. tularensis type VI secretion system, an essential virulence factor. This bS21 homolog is also uniquely important for robust intracellular growth. Our data support a model in which bS21 heterogeneity leads to modulation of translation, providing another source of posttranscriptional gene regulation. Regulation of translation by bS21, or other sources of ribosomal heterogeneity, may be a conserved mechanism to control gene expression across the bacterial phylogeny. 
    more » « less
  4. Storz, Gisela (Ed.)
    ABSTRACT Quorum sensing (QS) is a chemical communication process in which bacteria produce, release, and detect extracellular signaling molecules called autoinducers. Via combined transcriptional and posttranscriptional regulatory mechanisms, QS allows bacteria to collectively alter gene expression on a population-wide scale. Recently, the TetR family transcriptional regulator LuxT was shown to control Vibrio harveyi qrr 1, encoding the Qrr1 small RNA that functions at the core of the QS regulatory cascade. Here, we use RNA sequencing to reveal that, beyond the control of qrr 1, LuxT is a global regulator of 414 V. harveyi genes, including those involved in type III secretion, siderophore production, and aerolysin toxin biosynthesis. Importantly, LuxT directly represses swrZ , encoding a GntR family transcriptional regulator, and LuxT control of type III secretion, siderophore, and aerolysin genes occurs by two mechanisms, one that is SwrZ dependent and one that is SwrZ independent. All of these target genes specify QS-controlled behaviors that are enacted when V. harveyi is at low cell density. Thus, LuxT and SwrZ function in parallel with QS to drive particular low-cell-density behaviors. Phylogenetic analyses reveal that luxT is highly conserved among Vibrionaceae , but swrZ is less well conserved. In a test case, we find that in Aliivibrio fischeri , LuxT also represses swrZ . SwrZ is a repressor of A. fischeri siderophore production genes. Thus, LuxT repression of swrZ drives the activation of A. fischeri siderophore gene expression. Our results indicate that LuxT is a major regulator among Vibrionaceae , and in the species that also possess swrZ , LuxT functions with SwrZ to control gene expression. IMPORTANCE Bacteria precisely tune gene expression patterns to successfully react to changes that occur in the environment. Defining the mechanisms that enable bacteria to thrive in diverse and fluctuating habitats, including in host organisms, is crucial for a deep understanding of the microbial world and also for the development of effective applications to promote or combat particular bacteria. In this study, we show that a regulator called LuxT controls over 400 genes in the marine bacterium Vibrio harveyi and that LuxT is highly conserved among Vibrionaceae species, ubiquitous marine bacteria that often cause disease. We characterize the mechanisms by which LuxT controls genes involved in virulence and nutrient acquisition. We show that LuxT functions in parallel with a set of regulators of the bacterial cell-to-cell communication process called quorum sensing to promote V. harveyi behaviors at low cell density. 
    more » « less
  5. Ferric complexes of triscatechol siderophores may assume one of two enantiomeric configurations at the iron site. Chirality is known to be important in the iron uptake process, however an understanding of the molecular features directing stereospecific coordination remains ambiguous. Synthesis of the full suite of (DHB L/D Lys L/D Ser) 3 macrolactone diastereomers, which includes the siderophore cyclic trichrysobactin (CTC), enables the effects that the chirality of Lys and Ser residues exert on the configuration of the Fe( iii ) complex to be defined. Computationally optimized geometries indicate that the Λ/Δ configurational preferences are set by steric interactions between the Lys sidechains and the peptide backbone. The ability of each (DHB L/D Lys L/D Ser) 3 diastereomer to form a stable Fe( iii ) complex prompted a genomic search for biosynthetic gene clusters (BGCs) encoding the synthesis of these diastereomers in microbes. The genome of the plant pathogen Dickeya chrysanthemi EC16 was sequenced and the genes responsible for the biosynthesis of CTC were identified. A related but distinct BGC was identified in the genome of the opportunistic pathogen Yersinia frederiksenii ATCC 33641; isolation of the siderophore from Y. frederiksenii ATCC 33641, named frederiksenibactin (FSB), revealed the triscatechol oligoester, linear -(DHB L Lys L Ser) 3 . Circular dichroism (CD) spectroscopy establishes that Fe( iii )–CTC and Fe( iii )–FSB are formed in opposite enantiomeric configuration, consistent with the results of the ferric complexes of the cyclic (DHB L/D Lys L/D Ser) 3 diastereomers. 
    more » « less