Abstract: This work presents a novel technique to physically clone a ring oscillator physically unclonable function (RO PDF) onto another distinct FPG A die, using precise, targeted aging. The resulting cloned RO PDF provides a response that is identical to its copied FPGA counterpart, i.e., the FPGA and its clone are indistinguishable from each other. Targeted aging is achieved by: 1) heating the FPGA using bitstream-Iocated short circuits, and 2) enabling/disabling ROs in the same FPGA bitstream. During self heating caused by short-circuits contained in the FPGA bitstream, circuit areas containing oscillating ROs (enabled) degrade more slowly than circuit areas containing non-oscillating ROs (disabled), due to bias temperature instability effects. This targeted aging technique is used to swap the relative frequencies of two ROs that will, in turn, flip the corresponding bit in the PUF response. Two experiments are described. The first experiment uses targeted aging to create an FPGA that exhibits the same PUF response as another FPGA, i.e., a clone of an FPGA PUF onto another FPGA device. The second experiment demonstrates that this aging technique can create an RO PUF with any desired response.
more »
« less
Inducing Non-uniform FPGA Aging Using Configuration-based Short Circuits
This work demonstrates a novel method of accelerating FPGA aging by configuring FPGAs to implement thousands of short circuits, resulting in high on-chip currents and temperatures. Patterns of ring oscillators are placed across the chip and are used to characterize the operating frequency of the FPGA fabric. Over the course of several months of running the short circuits on two-thirds of the reconfigurable fabric, with daily characterization of the FPGA 6 performance, we demonstrate a decrease in FPGA frequency of 8.5%. We demonstrate that this aging is induced in a non-uniform manner. The maximum slowdown outside of the shorted regions is 2.1%, or about a fourth of the maximum slowdown that is experienced inside the shorted region. In addition, we demonstrate that the slowdown is linear after the first two weeks of the experiment and is unaffected by a recovery period. Additional experiments involving short circuits are also performed to demonstrate the results of our initial experiments are repeatable. These experiments also use a more fine-grained characterization method that provides further insight into the non-uniformed nature of the aging caused by short circuits.
more »
« less
- Award ID(s):
- 1738550
- PAR ID:
- 10345449
- Date Published:
- Journal Name:
- ACM Transactions on Reconfigurable Technology and Systems
- Volume:
- 15
- Issue:
- 4
- ISSN:
- 1936-7406
- Page Range / eLocation ID:
- 1 to 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Cloud deployments now increasingly provision FPGA accelerators as part of virtual instances. While FPGAs are still essentially single-tenant, the growing demand for hardware acceleration will inevitably lead to the need for methods and architectures supporting FPGA multi-tenancy. In this paper, we propose an architecture supporting space-sharing of FPGA devices among multiple tenants in the cloud. The proposed architecture implements a network-on-chip (NoC) designed for fast data movement and low hardware footprint. Prototyping the proposed architecture on a Xilinx Virtex Ultrascale + demonstrated near specification maximum frequency for on-chip data movement and high throughput in virtual instance access to hardware accelerators. We demonstrate similar performance compared to single-tenant deployment while increasing FPGA utilization (we achieved 6× higher FPGA utilization with our case study), which is one of the major goals of virtualization. Overall, our NoC interconnect achieved about 2× higher maximum frequency than the state-of-the-art and a bandwidth of 25.6 Gbpsmore » « less
-
The HSC-FPGA offers an intriguing feasible architecture for the next generation of configurable fabrics, which allows embracing the advantages of both CMOS and beyond-CMOS technologies without requiring significant modification to the routing structure, programming paradigms, and synthesis tool-chain of the commercial FPGAs. In the HSC-FPGA, the intrinsic characteristics of magnetic random access memory (MRAM)-look-up table (LUT) circuits are used to implement sequential logic, while combinational logic circuits are implemented by static random access memory (SRAM)-LUTs. Fabric-level simulation results for the developed HSC-FPGA show that it can achieve at least 18%, 70%, and 15% reduction in terms of area, standby power, and read power consumption, respectively, for various ISCAS-89 and ITC-99 benchmark circuits compared to conventional SRAM-based FPGAs. The power consumption values can be further decreased by the power-gating allowed by the non-volatility feature of MRAM-LUTs. Moreover, the benefits of increased heterogeneity for reconfigurable computing is extended along realizing probabilistic computing paradigms within a fabric, which is enabled by probabilistic spin logic devices. The cooperating strengths of technology-heterogeneity and heterogeneity in computing paradigm in the proposed HSC-FPGA are leveraged to develop energy-efficient and reliability-aware training and evaluation circuits for deep belief networks with memristive crossbar arrays and p-bit based probabilistic neurons.more » « less
-
Stealthy chip-level tamper attacks, such as hardware Trojan insertions or security-critical circuit modifications, can threaten modern microelectronic systems’ security. While traditional inspection and side-channel methods offer potential for tamper detection, they may not reliably detect all forms of attacks and often face practical limitations in terms of scalability, accuracy, or applicability. This work introduces a non-invasive, contactless tamper detection method employing a complementary split-ring resonator (CSRR). CSRRs, which are typically deployed for non-destructive material characterization, can be placed on the surface of the chip’s package to detect subtle variations in the impedance of the chip’s power delivery network (PDN) caused by tampering. The changes in the PDN’s impedance profile perturb the local electric near field and consequently affect the sensor’s impedance. These changes manifest as measurable variations in the sensor’s scattering parameters. By monitoring these variations, our approach enables robust and cost-effective physical integrity verification requiring neither physical contact with the chips or printed circuit board (PCB) nor activation of the underlying malicious circuits. To validate our claims, we demonstrate the detection of various chip-level tamper events on an FPGA manufactured with 28 nm technology.more » « less
-
Cloud deployments now increasingly exploit Field-Programmable Gate Array (FPGA) accelerators as part of virtual instances. While cloud FPGAs are still essentially single-tenant, the growing demand for efficient hardware acceleration paves the way to FPGA multi-tenancy. It then becomes necessary to explore architectures, design flows, and resource management features that aim at exposing multi-tenant FPGAs to the cloud users. In this article, we discuss a hardware/software architecture that supports provisioning space-shared FPGAs in Kernel-based Virtual Machine (KVM) clouds. The proposed hardware/software architecture introduces an FPGA organization that improves hardware consolidation and support hardware elasticity with minimal data movement overhead. It also relies on VirtIO to decrease communication latency between hardware and software domains. Prototyping the proposed architecture with a Virtex UltraScale+ FPGA demonstrated near specification maximum frequency for on-chip data movement and high throughput in virtual instance access to hardware accelerators. We demonstrate similar performance compared to single-tenant deployment while increasing FPGA utilization, which is one of the goals of virtualization. Overall, our FPGA design achieved about 2× higher maximum frequency than the state of the art and a bandwidth reaching up to 28 Gbps on 32-bit data width.more » « less
An official website of the United States government

