skip to main content

This content will become publicly available on April 26, 2023

Title: Nonlinear Anti-(Parity-Time) Symmetric Dimer
In the present work we propose a nonlinear anti- P T -symmetric dimer, that at the linear level has been experimentally created in the realm of electric circuit resonators. We find four families of solutions, the so-called upper and lower branches, both in a symmetric and in an asymmetric (symmetry-broken) form. We unveil analytically and confirm numerically the critical thresholds for the existence of such branches and explore the bifurcations (such as saddle-node ones) that delimit their existence, as well as transcritical ones that lead to their potential exchange of stability. We find that out of the four relevant branches, only one, the upper symmetric branch, corresponds to a spectrally and dynamically robust solution. We subsequently leverage detailed direct numerical computations in order to explore the dynamics of the different states, corroborating our spectral analysis results.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Frontiers in Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. Indistinguishability obfuscation, introduced by [Barak et. al. Crypto2001], aims to compile programs into unintelligible ones while preserving functionality. It is a fascinating and powerful object that has been shown to enable a host of new cryptographic goals and beyond. However, constructions of indistinguishability obfuscation have remained elusive, with all other proposals relying on heuristics or newly conjectured hardness assumptions. In this work, we show how to construct indistinguishability obfuscation from subexponential hardness of four well-founded assumptions. We prove: Informal Theorem: Let 𝜏∈ (0,∞), π›Ώβˆˆ (0,1), πœ–βˆˆ (0,1) be arbitrary constants. Assume sub-exponential security of the following assumptions: - the Learning With Errors (LWE) assumption with subexponential modulus-to-noise ratio 2^{π‘˜^πœ–} and noises of magnitude polynomial in π‘˜,where π‘˜ is the dimension of the LWE secret, - the Learning Parity with Noise (LPN) assumption over general prime fields Z𝑝 with polynomially many LPN samples and error rate 1/β„“^𝛿 ,where β„“ is the dimension of the LPN secret, - the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch 𝑛^{1+𝜏}, where 𝑛 is the length of the PRG seed, - the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order. Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuitsmore »exists. Further, assuming only polynomial security of the aforementioned assumptions, there exists collusion resistant public-key functional encryption for all polynomial-size circuits.« less
  2. The molecules 1,4-cyclohexadiene (unconjugated 1,4-CHD) and 1,3-cyclohexadiene (conjugated 1,3-CHD) both have two double bonds, but these bonds interact in different ways. These molecules have long served as examples of through-bond and through-space interactions, respectively, and their electronic structures have been studied in detail both experimentally and theoretically, with the experimental assignments being especially complete. The existence of Rydberg states interspersed with the valence states makes the quantum mechanical calculation of their spectra a challenging task. In this work, we explore the electronic excitation energies of 1,4-CHD and 1,3-CHD for both valence and Rydberg states by means of complete active space second-order perturbation theory (CASPT2), extended multi-state CASPT2 (XMS-CASPT2), and multiconfiguration pair-density functional theory (MC-PDFT); it is shown by comparison to experiment that MC-PDFT yields the most accurate results. We found that the inclusion of Rydberg orbitals in the active space not only enables the calculation of Rydberg excitation energies but also improves the accuracy of the valence ones. A special characteristic of the present analysis is the calculation of the second moments of the excited-state orbitals. Because we find that the CASPT2 densities agree well with the CASSCF ones and since the MC-PDFT methods gets accurate excitation energies based onmore »the CASSCF densities, we believe that we can trust these moments as far as giving a more accurate picture of the diffuseness of the excited-state orbitals in these prototype molecules than has previously been available.« less
  3. Abstract

    The existence of black holes (BHs) with masses in the range between stellar remnants and supermassive BHs has only recently become unambiguously established. GW190521, a gravitational wave signal detected by the LIGO/Virgo Collaboration, provides the first direct evidence for the existence of such intermediate-mass BHs (IMBHs). This event sparked and continues to fuel discussion on the possible formation channels for such massive BHs. As the detection revealed, IMBHs can form via binary mergers of BHs in the β€œupper mass gap” (β‰ˆ40–120MβŠ™). Alternatively, IMBHs may form via the collapse of a very massive star formed through stellar collisions and mergers in dense star clusters. In this study, we explore the formation of IMBHs with masses between 120 and 500MβŠ™in young, massive star clusters using state-of-the-art Cluster Monte Carlo models. We examine the evolution of IMBHs throughout their dynamical lifetimes, ending with their ejection from the parent cluster due to gravitational radiation recoil from BH mergers, or dynamical recoil kicks from few-body scattering encounters. We find thatallof the IMBHs in our models are ejected from the host cluster within the first ∼500 Myr, indicating a low retention probability of IMBHs in this mass range for globular clusters today. We estimate themore »peak IMBH merger rate to beξˆΎβ‰ˆ2Gpcβˆ’3yrβˆ’1at redshiftzβ‰ˆ 2.

    « less
  4. Abstract

    Most of the growth in agricultural output in the last thirty years comes from increases in the efficiency with which both land and non-land inputs are used. Recent work calls for a better understanding of whether this efficiency, known as total factor productivity (TFP), contributes to a more sustainable food system. Key to this understanding is the documented phenomenon that, instead of saving lands, the introduction of technologies that improve agricultural productivity encourage cropland expansion. We extend the results of a recently published econometric model of cross-country cropland change and TFP growth to explore the extent to which improvements in technology were associated with lower greenhouse emissions from land conversion to agriculture as well as with lower land conversion pressures in biodiversity-rich biomes. We focus on the decade of 2001–2010, a period in which our sample of 70 countries (β‰ˆ75% of global croplands) experienced net land contraction. Except in sub-Saharan Africa and South and East Asia, regional TFP growth was associated with regional land expansion, thus confirming the existence of Jevons paradox in most regions of the world. However, such expansion was more than offset by indirect land use effects stemming from increases in productivity somewhere else. These indirectmore »effects are far from trivial. In the absence of TFP growth, our estimates suggest that β‰ˆ125 Mha would have been needed to satisfy demand, half of which are in the four most biodiverse biomes of the world; estimated land use emissions from the ensuing changes in land use range from a lower bound of 17 Gt CO2eq to an upper bound of 84 Gt CO2eq, depending on whether the expansion would have occurred on pasturelands or forest, in contrast to the β‰ˆ1 to 15 Gt CO2eq imputed to observed cropland expansion. Our projections of the land needed to satisfy projected growth in TFP per capita during 2018–2023 indicate that current rates of TFP growth are insufficient to prevent further land expansion, reversing in most cases the in-sample trends in land contraction observed during 2001–2010.

    « less
  5. Abstract The possible existence of primordial black holes in the stellar-mass window has received considerable attention because their mergers may contribute to current and future gravitational-wave detections. Primordial black hole mergers, together with mergers of black holes originating from Population III stars, are expected to dominate at high redshifts ( z ≳ 10). However, the primordial black hole merger rate density is expected to rise monotonically with redshift, while Population III mergers can only occur after the birth of the first stars. Next-generation gravitational-wave detectors such as the Cosmic Explorer (CE) and Einstein Telescope (ET) can access this distinctive feature in the merger rates as functions of redshift, allowing for direct measurement of the abundance of the two populations and hence for robust constraints on the abundance of primordial black holes. We simulate four months’ worth of data observed by a CE-ET detector network and perform hierarchical Bayesian analysis to recover the merger rate densities. We find that if the universe has no primordial black holes with masses of  ( 10 M βŠ™ ) , the projected upper limit on their abundance f PBH as a fraction of dark matter energy density may be as low as f PBHmore »βˆΌ  ( 10 βˆ’ 5 ) , about two orders of magnitude lower than the current upper limits in this mass range. If instead f PBH ≳ 10 βˆ’4 , future gravitational-wave observations would exclude f PBH = 0 at the 95% credible interval.« less