We introduce a theory of stratifications of noncommutative stacks (i.e., presentable stable -categories), and we prove a reconstruction theorem that expresses them in terms of their strata and gluing data. This reconstruction theorem is compatible with symmetric monoidal structures, and with more general operadic structures such as -monoidal structures. We also provide a suite of fundamental operations for constructing new stratifications from old ones: restriction, pullback, quotient, pushforward, and refinement. Moreover, we establish a dual form of reconstruction; this is closely related to Verdier duality and reflection functors, and gives a categorification of Möbius inversion. Our main application is to equivariant stable homotopy theory: for any compact Lie group , we give a symmetric monoidal stratification of genuine -spectra. In the case that is finite, this expresses genuine -spectra in terms of their geometric fixedpoints (as homotopy-equivariant spectra) and gluing data therebetween (which are given by proper Tate constructions). We also prove an adelic reconstruction theorem; this applies not just to ordinary schemes but in the more general context of tensor-triangular geometry, where we obtain a symmetric monoidal stratification over the Balmer spectrum. We discuss the particular example of chromatic homotopy theory.
more »
« less
Nonlinear Anti-(Parity-Time) Symmetric Dimer
In the present work we propose a nonlinear anti- P T -symmetric dimer, that at the linear level has been experimentally created in the realm of electric circuit resonators. We find four families of solutions, the so-called upper and lower branches, both in a symmetric and in an asymmetric (symmetry-broken) form. We unveil analytically and confirm numerically the critical thresholds for the existence of such branches and explore the bifurcations (such as saddle-node ones) that delimit their existence, as well as transcritical ones that lead to their potential exchange of stability. We find that out of the four relevant branches, only one, the upper symmetric branch, corresponds to a spectrally and dynamically robust solution. We subsequently leverage detailed direct numerical computations in order to explore the dynamics of the different states, corroborating our spectral analysis results.
more »
« less
- PAR ID:
- 10345508
- Date Published:
- Journal Name:
- Frontiers in Physics
- Volume:
- 10
- ISSN:
- 2296-424X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deflation is an efficient numerical technique for identifying new branches of steady state solutions to nonlinear partial differential equations. Here, we demonstrate how to extend deflation to discover new periodic orbits in nonlinear dynamical lattices. We employ our extension to identify discrete breathers, which are generic exponentially localized, time-periodic solutions of such lattices. We compare different approaches to using deflation for periodic orbits, including ones based on Fourier decomposition of the solution, as well as ones based on the solution’s energy density profile. We demonstrate the ability of the method to obtain a wide variety of multibreather solutions without prior knowledge about their spatial profile.more » « less
-
Abstract This paper aims at proving the local boundedness and continuity of solutions of the heat equation in the context of Dirichlet spaces under some rather weak additional assumptions. We consider symmetric local regular Dirichlet forms, which satisfy mild assumptions concerning (1) the existence of cut‐off functions, (2) a local ultracontractivity hypothesis, and (3) a weak off‐diagonal upper bound. In this setting, local weak solutions of the heat equation, and their time derivatives, are shown to be locally bounded; they are further locally continuous, if the semigroup admits a locally continuous density function. Applications of the results are provided including discussions on the existence of locally bounded heat kernel; structure results for ancient (local weak) solutions of the heat equation.more » « less
-
Abstract The possible existence of primordial black holes in the stellar-mass window has received considerable attention because their mergers may contribute to current and future gravitational-wave detections. Primordial black hole mergers, together with mergers of black holes originating from Population III stars, are expected to dominate at high redshifts ( z ≳ 10). However, the primordial black hole merger rate density is expected to rise monotonically with redshift, while Population III mergers can only occur after the birth of the first stars. Next-generation gravitational-wave detectors such as the Cosmic Explorer (CE) and Einstein Telescope (ET) can access this distinctive feature in the merger rates as functions of redshift, allowing for direct measurement of the abundance of the two populations and hence for robust constraints on the abundance of primordial black holes. We simulate four months’ worth of data observed by a CE-ET detector network and perform hierarchical Bayesian analysis to recover the merger rate densities. We find that if the universe has no primordial black holes with masses of ( 10 M ⊙ ) , the projected upper limit on their abundance f PBH as a fraction of dark matter energy density may be as low as f PBH ∼ ( 10 − 5 ) , about two orders of magnitude lower than the current upper limits in this mass range. If instead f PBH ≳ 10 −4 , future gravitational-wave observations would exclude f PBH = 0 at the 95% credible interval.more » « less
-
The molecules 1,4-cyclohexadiene (unconjugated 1,4-CHD) and 1,3-cyclohexadiene (conjugated 1,3-CHD) both have two double bonds, but these bonds interact in different ways. These molecules have long served as examples of through-bond and through-space interactions, respectively, and their electronic structures have been studied in detail both experimentally and theoretically, with the experimental assignments being especially complete. The existence of Rydberg states interspersed with the valence states makes the quantum mechanical calculation of their spectra a challenging task. In this work, we explore the electronic excitation energies of 1,4-CHD and 1,3-CHD for both valence and Rydberg states by means of complete active space second-order perturbation theory (CASPT2), extended multi-state CASPT2 (XMS-CASPT2), and multiconfiguration pair-density functional theory (MC-PDFT); it is shown by comparison to experiment that MC-PDFT yields the most accurate results. We found that the inclusion of Rydberg orbitals in the active space not only enables the calculation of Rydberg excitation energies but also improves the accuracy of the valence ones. A special characteristic of the present analysis is the calculation of the second moments of the excited-state orbitals. Because we find that the CASPT2 densities agree well with the CASSCF ones and since the MC-PDFT methods gets accurate excitation energies based on the CASSCF densities, we believe that we can trust these moments as far as giving a more accurate picture of the diffuseness of the excited-state orbitals in these prototype molecules than has previously been available.more » « less
An official website of the United States government

