skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System
Today’s systems, rely on sending all the data to the cloud, and then use complex algorithms, such as Deep Neural Networks, which require billions of parameters and many hours to train a model. In contrast, the human brain can do much of this learning effortlessly. Hyperdimensional (HD) Computing aims to mimic the behavior of the human brain by utilizing high dimensional representations. This leads to various desirable properties that other Machine Learning (ML) algorithms lack such as: robustness to noise in the system and simple, highly parallel operations. In this paper, we propose \(\mathsf {HyDREA} \) , a Hy per D imensional Computing system that is R obust, E fficient, and A ccurate. We propose a Processing-in-Memory (PIM) architecture that works in a federated learning environment with challenging communication scenarios that cause errors in the transmitted data. \(\mathsf {HyDREA} \) adaptively changes the bitwidth of the model based on the signal to noise ratio (SNR) of the incoming sample to maintain the accuracy of the HD model while achieving significant speedup and energy efficiency. Our PIM architecture is able to achieve a speedup of 28 × and 255 × better energy efficiency compared to the baseline PIM architecture for Classification and achieves 32 × speed up and 289 × higher energy efficiency than the baseline architecture for Clustering. \(\mathsf {HyDREA} \) is able to achieve this by relaxing hardware parameters to gain energy efficiency and speedup while introducing computational errors. We show experimentally, HD Computing is able to handle the errors without a significant drop in accuracy due to its unique robustness property. For wireless noise, we found that \(\mathsf {HyDREA} \) is 48 × more robust to noise than other comparable ML algorithms. Our results indicate that our proposed system loses less than \(1\% \) Classification accuracy, even in scenarios with an SNR of 6.64. We additionally test the robustness of using HD Computing for Clustering applications and found that our proposed system also looses less than \(1\% \) in the mutual information score, even in scenarios with an SNR under 7 dB , which is 57 × more robust to noise than K-means.  more » « less
Award ID(s):
2120019 1826967 2127780
PAR ID:
10345530
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
ISSN:
1539-9087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Brain-inspired Hyper-dimensional(HD) computing is a novel and efficient computing paradigm. However, highly parallel architectures such as Processing-in-Memory(PIM) are bottle-necked by reduction operations required such as accumulation. To reduce this bottle-neck of HD computing in PIM, we present Stochastic-HD that combines the simplicity of operations in Stochastic Computing (SC) with the complex task solving capabilities of the latest HD computing algorithms. Stochastic-HD leverages deterministic SC, which enables all of HD operations to be done as highly parallel bitwise operations and removes all reduction operations, thus improving the throughput of PIM. To this end, we propose an in-memory hardware design for Stochastic-HD that exploits its high level of parallelism and robustness to approximation. Our hardware uses in-memory bitwise operations along with associative memory-like operations to enable a fast and energy-efficient implementation. With Stochastic-HD, we were able to reach a comparable accuracy with the Baseline-HD. Furthermore, by proposing an integrated Stochastic-HD retraining approach Stochastic-HD is able to reduce the accuracy loss to just 0.3%. We additionally accelerate the retraining process in our hardware design to create an end-to-end accelerator for Stochastic-HD. Finally, we also add support for HD Clustering to Stochastic-HD, which is the first to map the HD Clustering operations to the stochastic domain. As compared to the best PIM design for HD, Stochastic-HD is also 4.4% more accurate and 43.1× more energy-efficient. 
    more » « less
  2. Brain-inspired Hyperdimensional (HD) computing models cognition by exploiting properties of high dimensional statistics– high-dimensional vectors, instead of working with numeric values used in contemporary processors. A fundamental weakness of existing HD computing algorithms is that they require to use floating point models in order to provide acceptable accuracy on realistic classification problems. However, working with floating point values significantly increases the HD computation cost. To address this issue, we proposed QuantHD, a novel framework for quantization of HD computing model during training. QuantHD enables HD computing to work with a low-cost quantized model (binary or ternary model) while providing a similar accuracy as the floating point model. We accordingly propose an FPGA implementation which accelerates HD computing in both training and inference phases. We evaluate QuantHD accuracy and efficiency on various real-world applications, and observe that QuantHD can achieve on average 17.2% accuracy improvement as compared to the existing binarized HD computing algorithms which provide a similar computation cost. In terms of efficiency, QuantHD FPGA implementation can achieve on average 42.3× and 4.7× (34.1× and 4.1×) energy efficiency improvement and speedup during inference (training) as compared to the state-of-the-art HD computing algorithms. 
    more » « less
  3. Brain-inspired HyperDimensional (HD) computing emulates cognitive tasks by computing with long binary vectors–aka hypervectors–as opposed to computing with numbers. However, we observed that in order to provide acceptable classification accuracy on practical applications, HD algorithms need to be trained and tested on non-binary hypervectors. In this paper, we propose SearcHD, a fully binarized HD computing algorithm with a fully binary training. SearcHD maps every data points to a high-dimensional space with binary elements. Instead of training an HD model with non-binary elements, SearcHD implements a full binary training method which generates multiple binary hypervectors for each class. We also use the analog characteristic of non-volatile memories (NVMs) to perform all encoding, training, and inference computations in memory. We evaluate the efficiency and accuracy of SearcHD on a wide range of classification applications. Our evaluation shows that SearcHD can provide on average 31.1× higher energy efficiency and 12.8× faster training as compared to the state-of-the-art HD computing algorithms. 
    more » « less
  4. Hyperdimensional computing (HD) is an emerging brain-inspired paradigm used for machine learning classification tasks. It manipulates ultra-long vectors-hypervectors- using simple operations, which allows for fast learning, energy efficiency, noise tolerance, and a highly parallel distributed framework. HD computing has shown a significant promise in the area of biological signal classification. This paper addresses group-specific premature ventricular contraction (PVC) beat detection with HD computing using the data from the MIT-BIH arrhythmia database. Temporal, heart rate variability (HRV), and spectral features are extracted, and minimal redundancy maximum relevance (mRMR) is used to rank and select features for classification. Three encoding approaches are explored for mapping the features into the HD space. The HD computing classifiers can achieve a PVC beat detection accuracy of 97.7 % accuracy, compared to 99.4% achieved by more computationally complex methods such as convolutional neural networks (CNNs). 
    more » « less
  5. Abstract—Hyperdimensional Computing (HDC) is a neurallyinspired computation model working based on the observation that the human brain operates on high-dimensional representations of data, called hypervector. Although HDC is significantly powerful in reasoning and association of the abstract information, it is weak on features extraction from complex data such as image/video. As a result, most existing HDC solutions rely on expensive pre-processing algorithms for feature extraction. In this paper, we propose StocHD, a novel end-to-end hyperdimensional system that supports accurate, efficient, and robust learning over raw data. Unlike prior work that used HDC for learning tasks, StocHD expands HDC functionality to the computing area by mathematically defining stochastic arithmetic over HDC hypervectors. StocHD enables an entire learning application (including feature extractor) to process using HDC data representation, enabling uniform, efficient, robust, and highly parallel computation. We also propose a novel fully digital and scalable Processing In-Memory (PIM) architecture that exploits the HDC memorycentric nature to support extensively parallel computation. Our evaluation over a wide range of classification tasks shows that StocHD provides, on average, 3.3x and 6.4x (52.3x and 143.Sx) faster and higher energy efficiency as compared to state-of-the-art HDC algorithm running on PIM (NVIDIA GPU), while providing 16x higher computational robustness. 
    more » « less