skip to main content


Title: GRASSMANN CONVEXITY AND MULTIPLICATIVE STURM THEORY, REVISITED
In this paper we settle a special case of the Grassmann convexity conjecture formulated by the second and the third authors about a decade ago. We present a conjectural formula for the maximal total number of real zeros of the consecutive Wronskians of an arbitrary fundamental solution to a disconjugate linear ordinary differential equation with real time. We show that this formula gives the lower bound for the required total number of real zeros for equations of an arbitrary order and, using our results on the Grassmann convexity, we prove that the aforementioned formula is correct for equations of orders 4 and 5.  more » « less
Award ID(s):
1702115
NSF-PAR ID:
10345563
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Moscow mathematical journal
Volume:
21
Issue:
3
ISSN:
1609-3321
Page Range / eLocation ID:
613–637
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We outline and interpret a recently developed theory of impedance matching or reflectionless excitation of arbitrary finite photonic structures in any dimension. The theory includes both the case of guided wave and free-space excitation. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be possible and specifies how many physical parameters must be tuned to achieve this. In the absence of geometric symmetries, such as parity and time-reversal, the product of parity and time-reversal, or rotational symmetry, the tuning of at least one structural parameter will be necessary to achieve reflectionless excitation. The theory employs a recently identified set of complex frequency solutions of the Maxwell equations as a starting point, which are defined by having zero reflection into a chosen set of input channels, and which are referred to as R-zeros. Tuning is generically necessary in order to move an R-zero to the real frequency axis, where it becomes a physical steady-state impedance-matched solution, which we refer to as a reflectionless scattering mode (RSM). In addition, except in single-channel systems, the RSM corresponds to a particular input wavefront, and any other wavefront will generally not be reflectionless. It is useful to consider the theory as representing a generalization of the concept of critical coupling of a resonator, but it holds in arbitrary dimension, for arbitrary number of channels, and even when resonances are not spectrally isolated. In a structure with parity and time-reversal symmetry (a real dielectric function) or with parity–time symmetry, generically a subset of the R-zeros has real frequencies, and reflectionless states exist at discrete frequencies without tuning. However, they do not exist within every spectral range, as they do in the special case of the Fabry–Pérot or two-mirror resonator, due to a spontaneous symmetry-breaking phenomenon when two RSMs meet. Such symmetry-breaking transitions correspond to a new kind of exceptional point, only recently identified, at which the shape of the reflection and transmission resonance lineshape is flattened. Numerical examples of RSMs are given for one-dimensional multimirror cavities, a two-dimensional multiwaveguide junction, and a multimode waveguide functioning as a perfect mode converter. Two solution methods to find R-zeros and RSMs are discussed. The first one is a straightforward generalization of the complex scaling or perfectly matched layer method and is applicable in a number of important cases; the second one involves a mode-specific boundary matching method that has only recently been demonstrated and can be applied to all geometries for which the theory is valid, including free space and multimode waveguide problems of the type solved here. 
    more » « less
  2. Abstract

    We construct an example of a group$$G = \mathbb {Z}^2 \times G_0$$G=Z2×G0for a finite abelian group $$G_0$$G0, a subsetEof $$G_0$$G0, and two finite subsets$$F_1,F_2$$F1,F2of G, such that it is undecidable in ZFC whether$$\mathbb {Z}^2\times E$$Z2×Ecan be tiled by translations of$$F_1,F_2$$F1,F2. In particular, this implies that this tiling problem isaperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings ofEby the tiles$$F_1,F_2$$F1,F2, but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$Z2). A similar construction also applies for$$G=\mathbb {Z}^d$$G=Zdfor sufficiently large d. If one allows the group$$G_0$$G0to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles.

     
    more » « less
  3. Abstract

    The variational quantum eigensolver is one of the most promising approaches for performing chemistry simulations using noisy intermediate-scale quantum (NISQ) processors. The efficiency of this algorithm depends crucially on the ability to prepare multi-qubit trial states on the quantum processor that either include, or at least closely approximate, the actual energy eigenstates of the problem being simulated while avoiding states that have little overlap with them. Symmetries play a central role in determining the best trial states. Here, we present efficient state preparation circuits that respect particle number, total spin, spin projection, and time-reversal symmetries. These circuits contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace dictated by the chemistry problem while avoiding all irrelevant sectors of Hilbert space. We show how to construct these circuits for arbitrary numbers of orbitals, electrons, and spin quantum numbers, and we provide explicit decompositions and gate counts in terms of standard gate sets in each case. We test our circuits in quantum simulations of the$${H}_{2}$$H2and$$LiH$$LiHmolecules and find that they outperform standard state preparation methods in terms of both accuracy and circuit depth.

     
    more » « less
  4. In some applications, it is reasonable to assume that geodesics (rays) have a consistent orientation so that a time-harmonic elastic wave equation may be viewed as an evolution equation in one of the spatial directions. With such applications in mind, motivated by our recent work [Hadamard- Babich ansatz for point-source elastic wave equations in variable media at high frequencies, Multiscale Model Simul. 19/1 (2021) 46–86], we propose a new truncated Hadamard-Babich ansatz based globally valid asymptotic method, dubbed the fast Huygens sweeping method, for computing Green’s functions of frequency-domain point-source elastic wave equations in inhomogeneous media in the high-frequency asymptotic regime and in the presence of caustics. The first novelty of the fast Huygens sweeping method is that the Huygens-Kirchhoff secondary-source principle is used to integrate many locally valid asymptotic solutions to yield a globally valid asymptotic solution so that caustics can be treated automatically. This yields uniformly accurate solutions both near the source and away from it. The second novelty is that a butterfly algorithm is adapted to accelerate matrix-vector products induced by the Huygens-Kirchhoff integral. The new method enjoys the following desired features: (1) it treats caustics automatically; (2) precomputed asymptotic ingredients can be used to construct Green’s functions of elastic wave equations for many different point sources and for arbitrary frequencies; (3) given a specified number of points per wavelength, it constructs Green’s functions in nearly optimal complexity O(N logN) in terms of the total number of mesh points N, where the prefactor of the complexity depends only on the specified accuracy and is independent of the frequency parameter. Three-dimensional numerical examples are presented to demonstrate the performance and accuracy of the new method. 
    more » « less
  5. We study the expected number of real zeros for random linear combinations of orthogonal polynomials. It is well known that Kac polynomials, spanned by monomials with i.i.d. Gaussian coefficients, have only $(2/\pi + o(1))\log{n}$ expected real zeros in terms of the degree $n$. If the basis is given by the orthonormal polynomials associated with a compactly supported Borel measure on the real line, or associated with a Freud weight, then random linear combinations have $n/\sqrt{3} + o(n)$ expected real zeros. We prove that the same asymptotic relation holds for all random orthogonal polynomials on the real line associated with a large class of weights, and give local results on the expected number of real zeros. We also show that the counting measures of properly scaled zeros of these random polynomials converge weakly to either the Ullman distribution or the arcsine distribution. 
    more » « less