skip to main content


Title: Reflectionless excitation of arbitrary photonic structures: a general theory
Abstract We outline and interpret a recently developed theory of impedance matching or reflectionless excitation of arbitrary finite photonic structures in any dimension. The theory includes both the case of guided wave and free-space excitation. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be possible and specifies how many physical parameters must be tuned to achieve this. In the absence of geometric symmetries, such as parity and time-reversal, the product of parity and time-reversal, or rotational symmetry, the tuning of at least one structural parameter will be necessary to achieve reflectionless excitation. The theory employs a recently identified set of complex frequency solutions of the Maxwell equations as a starting point, which are defined by having zero reflection into a chosen set of input channels, and which are referred to as R-zeros. Tuning is generically necessary in order to move an R-zero to the real frequency axis, where it becomes a physical steady-state impedance-matched solution, which we refer to as a reflectionless scattering mode (RSM). In addition, except in single-channel systems, the RSM corresponds to a particular input wavefront, and any other wavefront will generally not be reflectionless. It is useful to consider the theory as representing a generalization of the concept of critical coupling of a resonator, but it holds in arbitrary dimension, for arbitrary number of channels, and even when resonances are not spectrally isolated. In a structure with parity and time-reversal symmetry (a real dielectric function) or with parity–time symmetry, generically a subset of the R-zeros has real frequencies, and reflectionless states exist at discrete frequencies without tuning. However, they do not exist within every spectral range, as they do in the special case of the Fabry–Pérot or two-mirror resonator, due to a spontaneous symmetry-breaking phenomenon when two RSMs meet. Such symmetry-breaking transitions correspond to a new kind of exceptional point, only recently identified, at which the shape of the reflection and transmission resonance lineshape is flattened. Numerical examples of RSMs are given for one-dimensional multimirror cavities, a two-dimensional multiwaveguide junction, and a multimode waveguide functioning as a perfect mode converter. Two solution methods to find R-zeros and RSMs are discussed. The first one is a straightforward generalization of the complex scaling or perfectly matched layer method and is applicable in a number of important cases; the second one involves a mode-specific boundary matching method that has only recently been demonstrated and can be applied to all geometries for which the theory is valid, including free space and multimode waveguide problems of the type solved here.  more » « less
Award ID(s):
1743235
NSF-PAR ID:
10292812
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nanophotonics
Volume:
10
Issue:
1
ISSN:
2192-8606
Page Range / eLocation ID:
343 to 360
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The application of parity–time (PT) symmetry in optics, especially PT-symmetry breaking, has attracted considerable attention as an approach to controlling light propagation. Here, we report optical limiting by two coupled optical cavities with a PT-symmetric spectrum of reflectionless modes. The optical limiting is related to broken PT symmetry due to light-induced changes in one of the cavities. Our experimental implementation involves a three-mirror resonator of alternating layers of ZnS and cryolite with a PT-symmetric spectral degeneracy of two reflectionless modes. The passive optical limiting is demonstrated by measurements of single 532 nm 6 ns laser pulses and thermo-optical simulations. At fluences below 10mJ/cm2, the multilayer exhibits a flattop passband at 532 nm. At higher fluences, laser heating combined with the thermo-optic effect in ZnS leads to cavity detuning and PT-symmetry breaking of the reflectionless modes. As a result, the entire multilayer structure quickly becomes highly reflective, protecting itself from laser-induced damage. The cavity detuning mechanism can differ at much higher limiting thresholds and include nonlinearity.

     
    more » « less
  2. In this paper, we explore the operation of a nonreciprocal non-Hermitian system consisting of a lossy magneto-optical ring resonator coupled to another ring resonator with gain and loss, and we demonstrate that such a system can exhibit non-reciprocity-based broken parity-time (PT) symmetry and supports one-way exceptional points. The nonreciprocal PT-phase transition is analyzed with the use of both analytical tools based on coupled-mode theory and two-dimensional finite element method simulations. Our calculations show that the response of the system strongly depends on the regime of operation – broken or preserved PT-symmetry. This response is leveraged to show that the system can operate as an optical isolator or a one-way laser with functionality tuned by adjusting loss/gain in the second ring resonator. The proposed system can thus be promising for device applications such as magnetically or even optically switchable non-reciprocal devices and one-way micro-ring lasers.

     
    more » « less
  3. We propose a novel photonic circuit element configuration that emulates the through-port response of a bus coupled traveling-wave resonator using two standing-wave resonant cavities. In this “reflectionless resonator unit”, the two constituent cavities, here photonic crystal (PhC) nanobeams, exhibit opposite mode symmetries and may otherwise belong to a single design family. They are coupled evanescently to the bus waveguide without mutual coupling. We show theoretically, and verify using FDTD simulations, that reflection is eliminated when the two cavities are wavelength aligned. This occurs due to symmetry-induced destructive interference at the bus coupling region in the proposed photonic circuit topology. The transmission is equivalent to that of a bus-coupled traveling-wave (e.g. microring) resonator for all coupling conditions. We experimentally demonstrate an implementation fabricated in a new 45 nm silicon-on-insulator complementary metal-oxide semiconductor (SOI CMOS) electronic-photonic process. Both PhC nanobeam cavities have a full-width half-maximum (FWHM) mode length of 4.28μm and measured intrinsic Q’s in excess of 200,000. When the resonances are tuned to degeneracy and coalesce, transmission dips of the over-coupled PhC nanobeam cavities of −16 dB and −17 dB nearly disappear showing a remaining single dip of −4.2 dB, while reflection peaks are simultaneously reduced by 10 dB, demonstrating the quasi-traveling-wave behavior. This photonic circuit topology paves the way for realizing low-energy active devices such as modulators and detectors that can be cascaded to form wavelength-division multiplexed links with smaller power consumption and footprint than traveling wave, ring resonator based implementations.

     
    more » « less
  4. Abstract This work presents a rigorous theory for topological photonic materials in one dimension. The main focus is on the existence of interface modes that are induced by topological properties of the bulk structure. For a general 1D photonic structure with time-reversal symmetry, we investigate the existence of an interface mode that is induced by a Dirac point upon perturbation. Specifically, we establish conditions on the perturbation which guarantee the opening of a band gap around the Dirac point and the existence of an interface mode. For a periodic photonic structure with both time-reversal and inversion symmetry, the Zak phase is quantized, taking only two values 0 , π . We show that the Zak phase is determined by the parity (even or odd) of the Bloch modes at the band edges. For a photonic structure consisting of two semi-infinite systems on the two sides of an interface with distinct topological indices, we show the existence of an interface mode inside the common gap. The stability of the mode under perturbations is also investigated. Finally, we study resonances for finite topological structures. Our results are based on the transfer matrix method and the oscillation theory for Sturm–Liouville operators. The methods and results can be extended to general topological Sturm–Liouville systems in one dimension. 
    more » « less
  5. Abstract

    Realization of chip‐scale nonreciprocal optics such as isolators and circulators is highly demanding for all‐optical signal routing and protection with standard photonics foundry process. Owing to the significant challenge for incorporating magneto‐optical materials on chip, the exploration of magnetic‐free alternatives has become exceedingly imperative in integrated photonics. Here, a chip‐based, tunable all‐optical isolator at the telecommunication band is demonstrated, which is based upon bulk stimulated Brillouin scattering (SBS) in a high‐Q silica microtoroid resonator. This device exhibits remarkable characteristics over most state‐of‐the‐art implements, including high isolation ratio, no insertion loss, and large working power range. Thanks to the guided acoustic wave and accompanying momentum‐conservation condition, bulk SBS also assist in realizing the nonreciprocal parity‐time symmetry in two directly coupled microresonators. The breach of time‐reversal symmetry further makes the design a versatile arena for developing many formidable ultra‐compact devices such as unidirectional single‐mode Brillouin lasers and supersensitive photonic sensors.

     
    more » « less