Tensor decomposition is an effective approach to compress over-parameterized neural networks and to enable their deployment on resource-constrained hardware platforms. However, directly applying tensor compression in the training process is a challenging task due to the difficulty of choosing a proper tensor rank. In order to address this challenge, this paper proposes a low-rank Bayesian tensorized neural network. Our Bayesian method performs automatic model compression via an adaptive tensor rank determination. We also present approaches for posterior density calculation and maximum a posteriori (MAP) estimation for the end-to-end training of our tensorized neural network. We provide experimental validation on a two-layer fully connected neural network, a 6-layer CNN and a 110-layer residual neural network where our work produces 7.4X to 137X more compact neural networks directly from the training while achieving high prediction accuracy.
more »
« less
General-Purpose Bayesian Tensor Learning With Automatic Rank Determination and Uncertainty Quantification
A major challenge in many machine learning tasks is that the model expressive power depends on model size. Low-rank tensor methods are an efficient tool for handling the curse of dimensionality in many large-scale machine learning models. The major challenges in training a tensor learning model include how to process the high-volume data, how to determine the tensor rank automatically, and how to estimate the uncertainty of the results. While existing tensor learning focuses on a specific task, this paper proposes a generic Bayesian framework that can be employed to solve a broad class of tensor learning problems such as tensor completion, tensor regression, and tensorized neural networks. We develop a low-rank tensor prior for automatic rank determination in nonlinear problems. Our method is implemented with both stochastic gradient Hamiltonian Monte Carlo (SGHMC) and Stein Variational Gradient Descent (SVGD). We compare the automatic rank determination and uncertainty quantification of these two solvers. We demonstrate that our proposed method can determine the tensor rank automatically and can quantify the uncertainty of the obtained results. We validate our framework on tensor completion tasks and tensorized neural network training tasks.
more »
« less
- Award ID(s):
- 1817037
- PAR ID:
- 10345686
- Date Published:
- Journal Name:
- Frontiers in Artificial Intelligence
- Volume:
- 4
- ISSN:
- 2624-8212
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Uncertainty quantification based on stochastic spectral methods suffers from the curse of dimensionality. This issue was mitigated recently by low-rank tensor methods. However, there exist two fundamental challenges in low-rank tensor-based uncertainty quantification: how to automatically determine the tensor rank and how to pick the simulation samples. This paper proposes a novel tensor regression method to address these two challenges. Our method uses an 12,p-norm regularization to determine the tensor rank and an estimated Voronoi diagram to pick informative samples for simulation. The proposed framework is verified by a 19-dim phonics bandpass filter and a 57-dim CMOS ring oscillator, capturing the high-dimensional uncertainty well with only 90 and 290 samples respectively.more » « less
-
Various hardware accelerators have been developed for energy-efficient and real-time inference of neural networks on edge devices. However, most training is done on high-performance GPUs or servers, and the huge memory and computing costs prevent training neural networks on edge devices. This paper proposes a novel tensor-based training framework, which offers orders-of-magnitude memory reduction in the training process. We propose a novel rank-adaptive tensorized neural network model, and design a hardware-friendly low-precision algorithm to train this model. We present an FPGA accelerator to demonstrate the benefits of this training method on edge devices. Our preliminary FPGA implementation achieves 59× speedup and 123× energy reduction compared to embedded CPU, and 292× memory reduction over a standard full-size training.more » « less
-
This monograph describes a novel optimization solution framework, called alternating gradient descent (GD) and minimization (AltGDmin), that is useful for many problems for which alternating minimization (AltMin) is a popular solution. AltMin is a special case of the block coordinate descent algorithm that is useful for problems in which min- imization w.r.t one subset of variables keeping the other fixed is closed form or otherwise reliably solved. Denote the two blocks/subsets of the optimization variables Z by Zslow, Zfast, i.e., Z = {Zslow, Zfast}. AltGDmin is often a faster solution than AltMin for any problem for which (i) the minimization over one set of variables, Zfast, is much quicker than that over the other set, Zslow; and (ii) the cost function is differentiable w.r.t. Zslow. Often, the reason for one minimization to be quicker is that the problem is “decou- pled” for Zfast and each of the decoupled problems is quick to solve. This decoupling is also what makes AltGDmin communication-efficient for federated settings. Important examples where this assumption holds include (a) low rank column-wise compressive sensing (LRCS), low rank matrix completion (LRMC), (b) their outlier-corrupted extensions such as robust PCA, robust LRCS and robust LRMC; (c) phase retrieval and its sparse and low-rank model based extensions; (d) tensor extensions of many of these problems such as tensor LRCS and tensor completion; and (e) many partly discrete problems where GD does not apply – such as clustering, unlabeled sensing, and mixed linear regression. LRCS finds important applications in multi-task representation learning and few shot learning, federated sketching, and accelerated dynamic MRI. LRMC and robust PCA find important applications in recommender systems, computer vision and video analytics.more » « less
-
Streaming tensor factorization is a powerful tool for processing high-volume and multi-way temporal data in Internet networks, recommender systems and image/video data analysis. Existing streaming tensor factorization algorithms rely on least-squares data fitting and they do not possess a mechanism for tensor rank determination. This leaves them susceptible to outliers and vulnerable to over-fitting. This paper presents a Bayesian robust streaming tensor factorization model to identify sparse outliers, automatically determine the underlying tensor rank and accurately fit low-rank structure. We implement our model in Matlab and compare it with existing algorithms on tensor datasets generated from dynamic MRI and Internet traffic.more » « less
An official website of the United States government

