Drones are increasingly being utilized in the construction industry, offering a wide range of applications. As these drones have to work with or alongside construction professionals, this integration could pose new safety risks and psychological impacts on construction professionals. Hence, it is important to understand their perceptions and attitudes towards drones and evaluate the cognitive demand of working with or near drones. Limited research has explored individuals' perceptions of drones, particularly when engaged in construction activities at job sites. This study specifically targets construction students, the future professionals in the field, to understand their responses to drone interactions on job sites. An immersive virtual reality construction site was developed using a VR game engine, allowing construction students to interact with drones while engaging in typical construction activities. Through a user-centered experiment, the influence of drone presence on construction students' attitude, cognitive workload, and perceived safety risk was evaluated. The results suggest that presence of drones did not significantly elevate cognitive load or foster significantly negative attitudes among construction students. Instead, they perceived only mild safety risks, suggesting a general acceptance and adaptability towards drone technology in construction settings.
more »
« less
Construction Worker-Drone Safety Training in a 360 Virtual Reality Environment: A Pilot Study
Integrating drones into construction sites can introduce new risks to workers who already work in hazardous environments. Consequently, several recent studies have investigated the safety challenges and solutions associated with this technology integration in construction. However, there is a knowledge gap about effectively communicating such safety challenges to construction professionals and students who may work alongside drones on job sites. In this study, a 360-degree virtual reality (VR) environment was created as a training platform to communicate the safety challenges of worker-drone interactions on construction jobsites. This pilot study assesses the learning effectiveness and user experience of the developed 360 VR worker-drone safety training, which provides an immersive device-agnostic learning experience. The result indicates that such 360 VR learning material could significantly increase the safety knowledge of users while delivering an acceptable user experience in most of its assessment criteria. The outcomes of this study will serve as a valuable resource for improving future worker-drone safety training materials.
more »
« less
- Award ID(s):
- 2024656
- PAR ID:
- 10345722
- Date Published:
- Journal Name:
- EPiC Series in Built Environment
- Volume:
- 3
- ISSN:
- 2632-881X
- Page Range / eLocation ID:
- 19 - 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Traditional lectures have difficulties instilling pragmatic skills in construction engineering students due to the inability to illuminate the complexities within the human-robot collaborative construction environment. While on-site can acclimatize construction students to reality and construct knowledge that can solve safety challenges, it is challenging to organize on-site training trips owing to the dangerous nature of construction workplaces. This research aimed to explore virtual reality (VR) as a tool to enhance students’ perception and knowledge of construction robotic safety. For this purpose, the study developed a virtual training platform for providing construction engineering students with safety knowledge on interacting with simulated robots within the virtual environment of construction sites. A self-assessment approach was leveraged among 20 recruited students to demonstrate the efficacy of students’ engagement and learning outcomes from the proposed learning approach over the traditional learning approach. Results indicated a statistical difference in students’ learning outcomes and engagement levels between the developed approach and the traditional approach. Findings demonstrated the implications of VR as an experiential tool to enhance the students’ learning of robotic safety in construction.more » « less
-
null (Ed.)Unoccupied Aerial Vehicles (UAVs), or drone technologies, with their high spatial resolution, temporal flexibility, and ability to repeat photogrammetry, afford a significant advancement in other remote sensing approaches for coastal mapping, habitat monitoring, and environmental management. However, geographical drone mapping and in situ fieldwork often come with a steep learning curve requiring a background in drone operations, Geographic Information Systems (GIS), remote sensing and related analytical techniques. Such a learning curve can be an obstacle for field implementation for researchers, community organizations and citizen scientists wishing to include introductory drone operations into their work. In this study, we develop a comprehensive drone training program for research partners and community members to use cost-effective, consumer-quality drones to engage in introductory drone mapping of coastal seagrass monitoring sites along the west coast of North America. As a first step toward a longer-term Public Participation GIS process in the study area, the training program includes lessons for beginner drone users related to flying drones, autonomous route planning and mapping, field safety, GIS analysis, image correction and processing, and Federal Aviation Administration (FAA) certification and regulations. Training our research partners and students, who are in most cases novice users, is the first step in a larger process to increase participation in a broader project for seagrass monitoring in our case study. While our training program originated in the United States, we discuss our experiences for research partners and communities around the globe to become more confident in introductory drone operations for basic science. In particular, our work targets novice users without a strong background in geographic research or remote sensing. Such training provides technical guidance on the implementation of a drone mapping program for coastal research, and synthesizes our approaches to provide broad guidance for using drones in support of a developing Public Participation GIS process.more » « less
-
Gonzalez, V; Zhang, J; de_Soto, B; Brilakis, I (Ed.)The construction industry is witnessing an increasing adoption of virtual reality (VR) technology for training and education purposes. Given this trend, it becomes essential to critically investigate the impact it has on learners, especially when compared to traditional paper-based learning method. In this paper, the authors developed a close-to-reality virtual system using the Unity3D game engine. Participants engage in learning safety protocols, operating a virtual crane, and assembling a steel structure within this environment. Corresponding paper-based instructional materials were also developed for comparison. The study involved 16 participants who were randomly assigned to either the VR training or the traditional paper-based training, their brainwaves data were recorded through electroencephalography (EEG) headset during the training progress to assess their emotions. Results show that an individual is most likely to experience exciting emotions when they are training in the VR system compared with the traditional training method. The correlation with actual safety performance, however, remains unclear and requires further investigation.more » « less
-
Robots present an innovative solution to the construction industry’s challenges, including safety concerns, skilled worker shortages, and productivity issues. Successfully collaborating with robots requires new competencies to ensure safety, smooth interaction, and accelerated adoption of robotic technologies. However, limited research exists on the specific competencies needed for human—robot collaboration in construction. Moreover, the perspectives of construction industry professionals on these competencies remain underexplored. This study examines the perceptions of construction industry professionals regarding the knowledge, skills, and abilities necessary for the effective implementation of human—robot collaboration in construction. A two-round Delphi survey was conducted with expert panel members from the construction industry to assess their views on the competencies for human—robot collaboration. The results reveal that the most critical competencies include knowledge areas such as human—robot interface, construction robot applications, human—robot collaboration safety and standards, task planning and robot control system; skills such as task planning, safety management, technical expertise, human—robot interface, and communication; and abilities such as safety awareness, continuous learning, problemsolving, critical thinking, and spatial awareness. This study contributes to knowledge by identifying the most significant competencies for human—robot collaboration in construction and highlighting their relative importance. These competencies could inform the design of educational and training programs and facilitate the integration of robotic technologies in construction. The findings also provide a foundation for future research to further explore and enhance these competencies, ultimately supporting safer, more efficient, and more productive construction practices.more » « less
An official website of the United States government

