Abstract With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.
more »
« less
Censored Quantile Regression Forest
Random forests are powerful non-parametric regression method but are severely limited in their usage in the presence of randomly censored observations, and naively applied can exhibit poor predictive performance due to the incurred biases. Based on a local adaptive representation of random forests, we develop its regression adjustment for randomly censored regression quantile models. Regression adjustment is based on a new estimating equation that adapts to censoring and leads to quantile score whenever the data do not exhibit censoring. The proposed procedure named censored quantile regression forest, allows us to estimate quantiles of time-to-event without any parametric modeling assumption. We establish its consistency under mild model specifications. Numerical studies showcase a clear advantage of the proposed procedure.
more »
« less
- Award ID(s):
- 1712481
- PAR ID:
- 10345788
- Editor(s):
- Chiappa, Silvia; Calandra, Roberto
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- Volume:
- 108
- ISSN:
- 2640-3498
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Quantile regression for right‐ or left‐censored outcomes has attracted attention due to its ability to accommodate heterogeneity in regression analysis of survival times. Rank‐based inferential methods have desirable properties for quantile regression analysis, but censored data poses challenges to the general concept of ranking. In this article, we propose a notion of censored quantile regression rank scores, which enables us to construct rank‐based tests for quantile regression coefficients at a single quantile or over a quantile region. A model‐based bootstrap algorithm is proposed to implement the tests. We also illustrate the advantage of focusing on a quantile region instead of a single quantile level when testing the effect of certain covariates in a quantile regression framework.more » « less
-
Summary This paper introduces an assumption-lean method that constructs valid and efficient lower predictive bounds for survival times with censored data. We build on recent work by Candès et al. (2023), whose approach first subsets the data to discard any data points with early censoring times and then uses a reweighting technique, namely, weighted conformal inference (Tibshirani et al., 2019), to correct for the distribution shift introduced by this subsetting procedure. For our new method, instead of constraining to a fixed threshold for the censoring time when subsetting the data, we allow for a covariate-dependent and data-adaptive subsetting step, which is better able to capture the heterogeneity of the censoring mechanism. As a result, our method can lead to lower predictive bounds that are less conservative and give more accurate information. We show that in the Type-I right-censoring setting, if either the censoring mechanism or the conditional quantile of the survival time is well estimated, our proposed procedure achieves nearly exact marginal coverage, where in the latter case we additionally have approximate conditional coverage. We evaluate the validity and efficiency of our proposed algorithm in numerical experiments, illustrating its advantage when compared with other competing methods. Finally, our method is applied to a real dataset to generate lower predictive bounds for users’ active times on a mobile app.more » « less
-
Abstract We propose an efficient estimator for the coefficients in censored quantile regression using the envelope model. The envelope model uses dimension reduction techniques to identify material and immaterial components in the data, and forms the estimator based only on the material component, thus reducing the variability of estimation. We will demonstrate the guaranteed asymptotic efficiency gain of our proposed envelope estimator over the traditional estimator for censored quantile regression. Our analysis begins with the local weighing approach that traditionally relies on semiparametric ‐estimation involving the conditional Kaplan–Meier estimator. We will instead invoke the independent identically distributed (i.i.d.) representation of the Kaplan–Meier estimator, which eliminates this infinite‐dimensional nuisance and transforms our objective function in ‐estimation into a ‐process indexed by only an Euclidean parameter. The modified ‐estimation problem becomes entirely parametric and hence more amenable to analysis. We will also reconsider the i.i.d. representation of the conditional Kaplan–Meier estimator.more » « less
-
Fan, Yanan; Nott, David; Smith, Michael S; Dortet-Bernadet, Jean-Luc. (Ed.)Quantile regression is widely seen as an ideal tool to understand complex predictor-response relations. Its biggest promise rests in its ability to quantify whether and how predictor effects vary across response quantile levels. But this promise has not been fully met due to a lack of statistical estimation methods that perform a rigorous, joint analysis of all quantile levels. This gap has been recently bridged by Yang and Tokdar [18]. Here we demonstrate how their joint quantile regression method, as encoded in the R package qrjoint, offers a comprehensive and model-based regression analysis framework. This chapter is an R vignette where we illustrate how to fit models, interpret coefficients, improve and compare models and obtain predictions under this framework. Our case study is an application to ecology where we analyse how the abundance of red maple trees depends on topographical and geographical features of the location. A complete absence of the species contributes excess zeros in the response data. We treat such excess zeros as left censoring in the spirit of a Tobit regression analysis. By utilising the generative nature of the joint quantile regression model, we not only adjust for censoring but also treat it as an object of independent scientific interest.more » « less
An official website of the United States government

