skip to main content


Title: A vignette on model-based quantile regression: analysing excess zero response
Quantile regression is widely seen as an ideal tool to understand complex predictor-response relations. Its biggest promise rests in its ability to quantify whether and how predictor effects vary across response quantile levels. But this promise has not been fully met due to a lack of statistical estimation methods that perform a rigorous, joint analysis of all quantile levels. This gap has been recently bridged by Yang and Tokdar [18]. Here we demonstrate how their joint quantile regression method, as encoded in the R package qrjoint, offers a comprehensive and model-based regression analysis framework. This chapter is an R vignette where we illustrate how to fit models, interpret coefficients, improve and compare models and obtain predictions under this framework. Our case study is an application to ecology where we analyse how the abundance of red maple trees depends on topographical and geographical features of the location. A complete absence of the species contributes excess zeros in the response data. We treat such excess zeros as left censoring in the spirit of a Tobit regression analysis. By utilising the generative nature of the joint quantile regression model, we not only adjust for censoring but also treat it as an object of independent scientific interest.  more » « less
Award ID(s):
1613173
NSF-PAR ID:
10309637
Author(s) / Creator(s):
; ;
Editor(s):
Fan, Yanan; Nott, David; Smith, Michael S; Dortet-Bernadet, Jean-Luc.
Date Published:
Journal Name:
Flexible Bayesian Regression Modelling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Infants born preterm or small for gestational age have elevated rates of morbidity and mortality. Using birth certificate records in Texas from 2002 to 2004 and Environmental Protection Agency air pollution estimates, we relate the quantile functions of birth weight and gestational age to ozone exposure and multiple predictors, including parental age, race, and education level. We introduce a semi-parametric Bayesian quantile approach that models the full quantile function rather than just a few quantile levels. Our multilevel quantile function model establishes relationships between birth weight and the predictors separately for each week of gestational age and between gestational age and the predictors separately across Texas Public Health Regions. We permit these relationships to vary nonlinearly across gestational age, spatial domain and quantile level and we unite them in a hierarchical model via a basis expansion on the regression coefficients that preserves interpretability. Very low birth weight is a primary concern, so we leverage extreme value theory to supplement our model in the tail of the distribution. Gestational ages are recorded in completed weeks of gestation (integer-valued), so we present methodology for modeling quantile functions of discrete response data. In a simulation study we show that pooling information across gestational age and quantile level substantially reduces MSE of predictor effects. We find that ozone is negatively associated with the lower tail of gestational age in south Texas and across the distribution of birth weight for high gestational ages. Our methods are available in the R package BSquare.

     
    more » « less
  2. Summary

    We propose a non-parametric variable selection method which does not rely on any regression model or predictor distribution. The method is based on a new statistical relationship, called additive conditional independence, that has been introduced recently for graphical models. Unlike most existing variable selection methods, which target the mean of the response, the method proposed targets a set of attributes of the response, such as its mean, variance or entire distribution. In addition, the additive nature of this approach offers non-parametric flexibility without employing multi-dimensional kernels. As a result it retains high accuracy for high dimensional predictors. We establish estimation consistency, convergence rate and variable selection consistency of the method proposed. Through simulation comparisons we demonstrate that the method proposed performs better than existing methods when the predictor affects several attributes of the response, and it performs competently in the classical setting where the predictors affect the mean only. We apply the new method to a data set concerning how gene expression levels affect the weight of mice.

     
    more » « less
  3. Chiappa, Silvia ; Calandra, Roberto (Ed.)
    Random forests are powerful non-parametric regression method but are severely limited in their usage in the presence of randomly censored observations, and naively applied can exhibit poor predictive performance due to the incurred biases. Based on a local adaptive representation of random forests, we develop its regression adjustment for randomly censored regression quantile models. Regression adjustment is based on a new estimating equation that adapts to censoring and leads to quantile score whenever the data do not exhibit censoring. The proposed procedure named censored quantile regression forest, allows us to estimate quantiles of time-to-event without any parametric modeling assumption. We establish its consistency under mild model specifications. Numerical studies showcase a clear advantage of the proposed procedure. 
    more » « less
  4. Abstract

    Linear quantile regression is a powerful tool to investigate how predictors may affect a response heterogeneously across different quantile levels. Unfortunately, existing approaches find it extremely difficult to adjust for any dependency between observation units, largely because such methods are not based upon a fully generative model of the data. For analysing spatially indexed data, we address this difficulty by generalizing the joint quantile regression model of Yang and Tokdar (Journal of the American Statistical Association, 2017, 112(519), 1107–1120) and characterizing spatial dependence via a Gaussian or t-copula process on the underlying quantile levels of the observation units. A Bayesian semiparametric approach is introduced to perform inference of model parameters and carry out spatial quantile smoothing. An effective model comparison criteria is provided, particularly for selecting between different model specifications of tail heaviness and tail dependence. Extensive simulation studies and two real applications to particulate matter concentration and wildfire risk are presented to illustrate substantial gains in inference quality, prediction accuracy and uncertainty quantification over existing alternatives.

     
    more » « less
  5. Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression usingtemporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses. 
    more » « less