Reis, T.; Grundel, S.; Schöps, S.
                            (Ed.)
                        
                    
            
                            This paper introduces a modified version of the recent data-driven Loewner framework to compute reduced order models (ROMs) for a class of semi-explicit differential algebraic equation (DAE) systems, which include the semi-discretized linearized Navier-Stokes /Oseen equations. The modified version estimates the polynomial part of the original transfer function from data and incorporate this estimate into the Loewner ROM construction. Without this proposed modification the transfer function of the Loewner ROM is strictly proper, i.e., goes to zero as the magnitude of the frequency goes to infinity, and therefore may have a different behavior for large frequencies than the transfer function of the original system. The modification leads to a Loewner ROM with a transfer function that has a strictly proper and a polynomial part, just as the original model. This leads to better approximations for transfer functioncomponents in which the coefficients in the polynomial part are not too small. The construction of the improved Loewner ROM is described and the improvement is demonstrated on a large-scale system governed by the semi-discretized Oseen equations. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    