skip to main content


Title: Translating Virtual Reality Research into Practice as a Way to Combat Misinformation: The DOVE Website
There are several barriers to research translation from academia to the broader HCI/UX community and specifically for the design of virtual reality applications. Because of the inaccessibility of evidence-based VR research to industry practitioners, freely-available blog-style media on platforms like Medium, where there is no moderation, is more available, leading to the spread of misinformation. The Design of Virtual Environments (DOVE) website, attempts to address this challenge by offering peer reviewed unbiased VR research, translating it for the layperson, and opening it up to contribution, synthesis and discussion through forums. This paper describes the initial user centered design process for the DOVE website through informal expert interviews, competitive analysis and heuristic review to redesign the site navigation, translation content, and incentivized forms for submission of research. When completed, the DOVE website will aid the translation of AR/VR research to practice.  more » « less
Award ID(s):
1816029
NSF-PAR ID:
10345887
Author(s) / Creator(s):
; ; ;
Editor(s):
Stephanidis, Constantine; Antona, Margherita; Ntoa, Stavroula
Date Published:
Journal Name:
Communications in computer and information science
Volume:
1498
ISSN:
1865-0937
Page Range / eLocation ID:
341-348
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Virtual reality (VR) systems have been increasingly used in recent years in various domains, such as education and training. Presence, which can be described as ‘the sense of being there’ is one of the most important user experience aspects in VR. There are several components, which may affect the level of presence, such as interaction, visual fidelity, and auditory cues. In recent years, a significant effort has been put into increasing the sense of presence in VR. This study focuses on improving user experience in VR by increasing presence through increased interaction fidelity and enhanced illusions. Interaction in real life includes mutual and bidirectional encounters between two or more individuals through shared tangible objects. However, the majority of VR interaction to date has been unidirectional. This research aims to bridge this gap by enabling bidirectional mutual tangible embodied interactions between human users and virtual characters in world-fixed VR through real-virtual shared objects that extend from virtual world into the real world. I hypothesize that the proposed novel interaction will shrink the boundary between the real and virtual worlds (through virtual characters that affect the physical world), increase the seamlessness of the VR system (enhance the illusion) and the fidelity of interaction, and increase the level of presence and social presence, enjoyment and engagement. This paper includes the motivation, design and development details of the proposed novel world-fixed VR system along with future directions. 
    more » « less
  2. null (Ed.)
    Problem-solving focuses on defining and analyzing problems, then finding viable solutions through an iterative process that requires brainstorming and understanding of what is known and what is unknown in the problem space. With rapid changes of economic landscape in the United States, new types of jobs emerge when new industries are created. Employers report that problem-solving is the most important skill they are looking for in job applicants. However, there are major concerns about the lack of problem-solving skills in engineering students. This lack of problem-solving skills calls for an approach to measure and enhance these skills. In this research, we propose to understand and improve problem-solving skills in engineering education by integrating eye-tracking sensing with virtual reality (VR) manufacturing. First, we simulate a manufacturing system in a VR game environment that we call a VR learning factory. The VR learning factory is built in the Unity game engine with the HTC Vive VR system for navigation and motion tracking. The headset is custom-fitted with Tobii eye-tracking technology, allowing the system to identify the coordinates and objects that a user is looking at, at any given time during the simulation. In the environment, engineering students can see through the headset a virtual manufacturing environment composed of a series of workstations and are able to interact with workpieces in the virtual environment. For example, a student can pick up virtual plastic bricks and assemble them together using the wireless controller in hand. Second, engineering students are asked to design and assemble car toys that satisfy predefined customer requirements while minimizing the total cost of production. Third, data-driven models are developed to analyze eye-movement patterns of engineering students. For instance, problem-solving skills are measured by the extent to which the eye-movement patterns of engineering students are similar to the pattern of a subject matter expert (SME), an ideal person who sets the expert criterion for the car toy assembly process. Benchmark experiments are conducted with a comprehensive measure of performance metrics such as cycle time, the number of station switches, weight, price, and quality of car toys. Experimental results show that eye-tracking modeling is efficient and effective to measure problem-solving skills of engineering students. The proposed VR learning factory was integrated into undergraduate manufacturing courses to enhance student learning and problem-solving skills. 
    more » « less
  3. Remote scientific collaborations have been pivotal in generating scientific discoveries and breakthroughs that accelerate research in many fields. Emerging VR applications for remote work, which utilize commercially available head-mounted displays (HMDs), offer the promise to enhance collaboration, through spatial and embodied experiences. However, there is little evidence on how professionals in general, and scientists in particular, could use existing commercial VR applications to support their cognitive and creative collaborative processes while exploring real-world data as part of day-to-day collaborative work. In this paper, we present findings from an empirical study with 14 coral reef scientists, examining how they chose to utilize available resources in existing virtual environments for their ongoing data-driven collaborative research. We shed light on scientists’ data organization practices, identify affordances unique to VR for supporting cognition in a collaborative setting, and highlight design requirements for supporting cognitive and creative collaboration processes in future tools. 
    more » « less
  4. While tremendous advances in visual and auditory realism have been made for virtual and augmented reality (VR/AR), introducing a plausible sense of physicality into the virtual world remains challenging. Closing the gap between real-world physicality and immersive virtual experience requires a closed interaction loop: applying user-exerted physical forces to the virtual environment and generating haptic sensations back to the users. However, existing VR/AR solutions either completely ignore the force inputs from the users or rely on obtrusive sensing devices that compromise user experience. By identifying users' muscle activation patterns while engaging in VR/AR, we design a learning-based neural interface for natural and intuitive force inputs. Specifically, we show that lightweight electromyography sensors, resting non-invasively on users' forearm skin, inform and establish a robust understanding of their complex hand activities. Fuelled by a neural-network-based model, our interface can decode finger-wise forces in real-time with 3.3% mean error, and generalize to new users with little calibration. Through an interactive psychophysical study, we show that human perception of virtual objects' physical properties, such as stiffness, can be significantly enhanced by our interface. We further demonstrate that our interface enables ubiquitous control via finger tapping. Ultimately, we envision our findings to push forward research towards more realistic physicality in future VR/AR. 
    more » « less
  5. Virtual reality (VR) is a relatively new and rapidly growing field which is becoming accessible by the larger research community as well as being commercially available for en- tertainment. Relatively cheap and commercially available head mounted displays (HMDs) are the largest reason for this increase in availability. This work uses Unity and an HMD to create a VR environment to display a 360◦video of a pre-recorded patient handoff be- tween a nurse and doctor. The VR environment went through different designs while in development. This works discusses each stage of it’s design and the unique challenges we encountered during development. This work also discusses the implementation of the user study and the visualization of collected eye tracking data.

     
    more » « less