skip to main content

This content will become publicly available on July 1, 2023

Title: Stable isotope variability of precipitation and cave drip-water at Jumandy cave, western Amazon River basin (Ecuador)
; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Hydrology
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A 230 Th/U-dated stalagmite from Hulu Cave was analyzed for δ 18 O, δ 13 C, and trace elements. A ~10-yr-resolution δ 18 O record, spanning 51.7–42.6 ka, revealed Dansgaard-Oeschger (DO) events 14 to 11. A similar rapid transition and synchronous timing of the onset of DO 12 is evident between the Greenland and Hulu Cave records, which suggests a common forcing mechanism of DO cycles in the North Atlantic and monsoonal region of Asia. Centennial-scale monsoonal oscillations in the cave δ 18 O record are indicative of hydroclimatic instability during interstadials. After removing the signals of remote moisture sources, the proportion of moisture from nearby sources is found to be higher during stadials than during interstadials. To explain this, we propose that the movement of the westerly jet is an important control on the balance of nearby and distant moisture sources in East Asia. In addition, the records of δ 13 C and trace element ratios, which are proxies of local environmental changes, resemble the δ 18 O record on the scale of DO cycles, as well as on even shorter timescales. This suggests that hydrological processes and biological activity at the cave site respond sensitively to themore »monsoonal changes.« less
  2. Caves are often assumed to be static environments separated from weather changes experienced on the surface. The high humidity and stability of these subterranean environments make them attractive to many different organisms including microbes such as bacteria and protists. Cave waters generally originate from the surface, may be filtered by overlying soils, can accumulate in interstitial epikarst zones underground, and emerge in caves as streams, pools and droplets on speleothems. Water movement is the primary architect of karst caves, and depending on the hydrologic connectivity between surface and subsurface, is the most likely medium for the introduction of microbes to caves. Recently published metabarcoding surveys of karst cave soils and speleothems have suggested that the vast majority of bacteria residing in these habitats do not occur on the surface, calling into question the role of microbial transport by surface waters. The purpose of this study was to use metabarcoding to monitor the aquatic prokaryotic microbiome of a cave for 1 year, conduct longitudinal analyses of the cave’s aquatic bacterioplankton, and compare it to nearby surface water. Water samples were collected from two locations inside Panel Cave in Natural Tunnel State Park in Duffield, VA and two locations outside of themore »cave. Of the two cave locations, one was fed by groundwater and drip water and the other by infiltrating surface water. A total of 1,854 distinct prokaryotic ASVs were detected from cave samples and 245 (13.1%) were not found in surface samples. PCo analysis demonstrated a marginal delineation between two cave sample sites and between cave and surface microbiomes suggesting the aquatic bacterioplankton in a karst cave is much more similar to surface microbes than reported from speleothems and soils. Most surprisingly, there was a cave microbe population and diversity bloom in the fall months whereas biodiversity remained relatively steady on the surface. The cave microbiome was more similar to the surface before the bloom than during and afterwards. This event demonstrates that large influxes of bacteria and particulate organic matter can enter the cave from either the surface or interstitial zones and the divergence of the cave microbiome from the surface demonstrates movement of microbes from the epikarst zones into the cave.« less