skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: No ensemble averaging below the black hole threshold
A bstract In the AdS/CFT correspondence, amplitudes associated to connected bulk manifolds with disconnected boundaries have presented a longstanding mystery. A possible interpretation is that they reflect the effects of averaging over an ensemble of boundary theories. But in examples in dimension D ≥ 3, an appropriate ensemble of boundary theories does not exist. Here we sharpen the puzzle by identifying a class of “fixed energy” or “sub-threshold” observables that we claim do not show effects of ensemble averaging. These are amplitudes that involve states that are above the ground state by only a fixed amount in the large N limit, and in particular are far from being black hole states. To support our claim, we explore the example of D = 3, and show that connected solutions of Einstein’s equations with disconnected boundary never contribute to these observables. To demonstrate this requires some novel results about the renormalized volume of a hyperbolic three-manifold, which we prove using modern methods in hyperbolic geometry. Why then do any observables show apparent ensemble averaging? We propose that this reflects the chaotic nature of black hole physics and the fact that the Hilbert space describing a black hole does not have a large N limit.  more » « less
Award ID(s):
1911298
PAR ID:
10345954
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
7
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with $$ \mathcal{N} $$ N = 1 supersymmetry. We first calculate the mixed parabolic representation matrix element (or Whittaker function) of U q ( $$ \mathfrak{sl} $$ sl (2 , ℝ)) and review its applications to Liouville gravity. We then derive the corresponding matrix element for U q ( $$ \mathfrak{osp} $$ osp (1 | 2 , ℝ)) and apply it to explain structural features of $$ \mathcal{N} $$ N = 1 Liouville supergravity. We show that this matrix element has the following properties: (1) its q → 1 limit is the classical OSp + (1 | 2 , ℝ) Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in $$ \mathcal{N} $$ N = 1 Liouville supergravity, and (3) it leads to 3 j -symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for $$ \mathcal{N} $$ N = 1 Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group U q ( $$ \mathfrak{sl} $$ sl (2 , ℝ)) or the quantum supergroup U q ( $$ \mathfrak{osp} $$ osp (1 | 2 , ℝ)). 
    more » « less
  2. We revisit the construction of models of quantum gravity in d dimensional Minkowski space in terms of random tensor models, and correct some mistakes in our previous treatment of the subject. We find a large class of models in which the large impact parameter scattering scales with energy and impact parameter like Newton`s law. The scattering amplitudes in these models describe scattering of jets of particles, and also include amplitudes for the production of highly meta-stable states with all the parametric properties of black holes. These models have emergent energy, momentum and angular conservation laws, despite being based on time dependent Hamiltonians. The scattering amplitudes in which no intermediate black holes are produced have a time-ordered Feynman diagram space-time structure: local interaction vertices connected by propagation of free particles (really Sterman-Weinberg jets of particles). However, there are also amplitudes where jets collide to form large meta-stable objects, with all the scaling properties of black holes: energy, entropy and temperature, as well as the characteristic time scale for the decay of perturbations. We generalize the conjecture of Sekino and Susskind, to claim that all of these models are fast scramblers. The rationale for this claim is that the interactions are invariant under fuzzy subgroups of the group of volume preserving diffeomorphisms, so that they are highly non-local on the holographic screen. We review how this formalism resolves the Firewall Paradox. 
    more » « less
  3. In this note we present a solution of N=4,d=7 gauged supergravity which is holographically dual to a co-dimension two defect living in a six dimensional SCFT. The solution is obtained by double analytic continuation of a two charge supersymmetric black hole solution. The condition that no conical deficits are present in the bulk and on the boundary is satisfied by a one parameter family of solutions for which some holographic observables are computed. 
    more » « less
  4. A<sc>bstract</sc> It has long been conjectured that the largeNdeconfinement phase transition of$$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills corresponds via AdS/CFT to the Hawking-Page transition in which black holes dominate the thermal ensemble, and quantitative evidence of this has come through the recent matching of the superconformal index of$$ \frac{1}{16} $$ 1 16 -BPS states to the supersymmetric black hole entropy. We introduce the half-BPS Gukov-Witten surface defect as a probe of the superconformal index, which also serves as an order parameter for the deconfinement transition. This can be studied directly in field theory as a modification of the usual unitary matrix model or in the dual description as a D3-brane probe in the background of a (complex) supersymmetric black hole. Using a saddle point approximation, we determine our defect index in the largeNlimit as a simple function of the chemical potentials and show independently that it is reproduced by the renormalized action of the brane in the black hole background. Along the way, we also comment on the Cardy limit and the thermodynamics of the D3-brane in the generalized ensemble. The defect index sharply distinguishes between the confining and the deconfining phases of the gauge theory and thus is a supersymmetric non-perturbative order parameter for these largeNphase transitions which deserves further investigation. Finally, our work provides an example where the properties of a black hole coupled to an external system can be analyzed precisely. 
    more » « less
  5. A bstract The entropy of a de Sitter horizon was derived long ago by Gibbons and Hawking via a gravitational partition function. Since there is no boundary at which to define the temperature or energy of the ensemble, the statistical foundation of their approach has remained obscure. To place the statistical ensemble on a firm footing we introduce an artificial “York boundary”, with either canonical or microcanonical boundary conditions, as has been done previously for black hole ensembles. The partition function and the density of states are expressed as integrals over paths in the constrained, spherically reduced phase space of pure 3+1 dimensional gravity with a positive cosmological constant. Issues related to the domain and contour of integration are analyzed, and the adopted choices for those are justified as far as possible. The canonical ensemble includes a patch of spacetime without horizon, as well as configurations containing a black hole or a cosmological horizon. We study thermodynamic phases and (in)stability, and discuss an evolving reservoir model that can stabilize the cosmological horizon in the canonical ensemble. Finally, we explain how the Gibbons-Hawking partition function on the 4-sphere can be derived as a limit of well-defined thermodynamic ensembles and, from this viewpoint, why it computes the dimension of the Hilbert space of states within a cosmological horizon. 
    more » « less