This content will become publicly available on June 1, 2023
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1908422
- Publication Date:
- NSF-PAR ID:
- 10345963
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 662
- Page Range or eLocation-ID:
- A33
- ISSN:
- 0004-6361
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We report the first spatially resolved measurements of gas-phase metallicity radial gradients in star-forming galaxies in overdense environments at z ≳ 2. The spectroscopic data are acquired by the MAMMOTH-Grism survey, a Hubble Space Telescope (HST) cycle 28 medium program. This program is obtaining 45 orbits of WFC3/IR grism spectroscopy in the density peak regions of three massive galaxy protoclusters (BOSS 1244, BOSS 1542, and BOSS 1441) at z = 2–3. Our sample in the BOSS 1244 field consists of 20 galaxies with stellar mass ranging from 10 9.0 to 10 10.3 M ⊙ , star formation rate (SFR) from 10 to 240 M ⊙ yr −1 , and global gas-phase metallicity ( 12 + log ( O / H ) ) from 8.2 to 8.6. At 1 σ confidence level, 2/20 galaxies in our sample show positive (inverted) gradients—the relative abundance of oxygen increasing with galactocentric radius, opposite the usual trend. Furthermore, 1/20 shows negative gradients, and 17/20 are consistent with flat gradients. This high fraction of flat/inverted gradients is uncommon in simulations and previous observations conducted in blank fields at similar redshifts. To understand this, we investigate the correlations among various observed properties of our sample galaxies.more »
-
Star formation rate (SFR) measurements at z > 4 have relied mostly on the rest-frame far-ultraviolet (FUV) observations. The corrections for dust attenuation based on the IRX- β relation are highly uncertain and are still debated in the literature. Hence, rest-frame far-infrared (FIR) observations are necessary to constrain the dust-obscured component of the SFR. In this paper, we exploit the rest-frame FIR continuum observations collected by the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) to directly constrain the obscured SFR in galaxies at 4.4 < z < 5.9. We used stacks of continuum images to measure average infrared luminosities taking both detected and undetected sources into account. Based on these measurements, we measured the position of the main sequence of star-forming galaxies and the specific SFR (sSFR) at z ∼ 4.5 and z ∼ 5.5. We find that the main sequence and sSFR do not significantly evolve between z ∼ 4.5 and z ∼ 5.5, as opposed to lower redshifts. We developed a method to derive the obscured SFR density (SFRD) using the stellar masses or FUV-magnitudes as a proxy of FIR fluxes measured on the stacks and combining them with the galaxy stellar mass functions and FUV luminosity functions from the literature. Wemore »
-
ABSTRACT This paper presents a survey of Mg ii absorbing gas in the vicinity of 380 random galaxies, using 156 background quasi-stellar objects (QSOs) as absorption-line probes. The sample comprises 211 isolated (73 quiescent and 138 star-forming galaxies) and 43 non-isolated galaxies with sensitive constraints for both Mg ii absorption and H α emission. The projected distances span a range from d = 9 to 497 kpc, redshifts of the galaxies range from z = 0.10 to 0.48, and rest-frame absolute B-band magnitudes range from MB = −16.7 to −22.8. Our analysis shows that the rest-frame equivalent width of Mg ii, Wr(2796), depends on halo radius (Rh), B-band luminosity(LB), and stellar mass (Mstar) of the host galaxies, and declines steeply with increasing d for isolated, star-forming galaxies. At the same time, Wr(2796) exhibits no clear trend for either isolated, quiescent galaxies or non-isolated galaxies. In addition, the covering fraction of Mg ii absorbing gas 〈κ〉 is high with 〈κ〉 ≳ 60 per cent at <40 kpc for isolated galaxies and declines rapidly to 〈κ〉 ≈ 0 at d ≳ 100 kpc. Within the gaseous radius, the incidence of Mg ii gas depends sensitively on both Mstar and the specific star formation rate inferred from H α. Different from what is known for massive quiescent haloes,more »
-
ABSTRACT We analyse the rest-optical emission-line spectra of z ∼ 2.3 star-forming galaxies in the complete MOSFIRE Deep Evolution Field (MOSDEF) survey. In investigating the origin of the well-known offset between the sequences of high-redshift and local galaxies in the [O iii]λ5008/Hβ versus [N ii]λ6585/Hα (‘[N ii] BPT’) diagram, we define two populations of z ∼ 2.3 MOSDEF galaxies. These include the high population that is offset towards higher [O iii]λ5008/Hβ and/or [N ii]λ6585/Hα with respect to the local SDSS sequence and the low population that overlaps the SDSS sequence. These two groups are also segregated within the [O iii]λ5008/Hβ versus [S ii]λλ6718,6733/Hα and the [O iii]λλ4960,5008/[O ii ]λλ3727,3730 (O32) versus ([O iii]λλ4960,5008+[O ii]λλ3727,3730)/Hβ (R23) diagrams, which suggests qualitatively that star-forming regions in the more offset galaxies are characterized by harder ionizing spectra at fixed nebular oxygen abundance. We also investigate many galaxy properties of the split sample and find that the high sample is on average smaller in size and less massive, but has higher specific star formation rate (SFR) and SFR surface density values and is slightly younger compared to the low population. From Cloudy+BPASS photoionization models, we estimate that the high population has a lower stellar metallicity (i.e. harder ionizing spectrum) but slightly higher nebular metallicity and higher ionizationmore »
-
Abstract We use a sample of 27 gamma-ray bursts (GRBs) at redshift
z = 2–6 to probe the outflows in their respective host galaxies (log(M */M ⊙) ∼ 9–11) and search for possible relations between the outflow properties and those of the host galaxies, such asM *, the star formation rate (SFR), and the specific SFR (sSFR). First, we consider three outflow properties: outflow column density (N out), maximum outflow velocity (V max), and normalized maximum velocity (V norm=V max/V circ,halo, whereV circ,halois the halo circular velocity). We observe clear trends ofN outandV maxwith increasing SFR in high-ion-traced outflows, with a stronger (>3σ )V max–SFR correlation. We find that the estimated mass outflow rate and momentum flux of the high-ion outflows scale with SFR and can be supported by the momentum imparted by star formation (supernovae and stellar winds). The kinematic correlations of high-ion-traced outflows with SFR are similar to those observed for star-forming galaxies at low redshifts. The correlations with SFR are weaker in low-ion outflows. This, along with the lower detection fraction in low-ion outflows, indicates that the outflow is primarily high-ion dominated. We also observe a strong (>3σ ) trend of normalized velocity (V norm) decreasing with halo mass and increasing with sSFR, suggesting that outflows from low-mass halos and high-sSFR galaxies are mostmore »