skip to main content


Search for: All records

Award ID contains: 1908422

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this work, we publish stellar velocity dispersions, sizes, and dynamical masses for eight ultramassive galaxies (UMGs;log(M*/M)> 11),z≳ 3) from the Massive Ancient Galaxies Atz> 3 NEar-infrared (MAGAZ3NE) Survey, more than doubling the number of such galaxies with velocity dispersion measurements at this epoch. Using the deep Keck/MOSFIRE and Keck/NIRES spectroscopy of these objects in theHandKbandpasses, we obtain large velocity dispersions of ∼400 km s−1for most of the objects, which are some of the highest stellar velocity dispersions measured and ∼40% larger than those measured for galaxies of similar mass atz∼ 1.7. The sizes of these objects are also smaller by a factor of 1.5–3 compared to this samez∼ 1.7 sample. We combine these large velocity dispersions and small sizes to obtain dynamical masses. The dynamical masses are similar to the stellar masses of these galaxies, consistent with a Chabrier initial mass function (IMF). Considered alongside previous studies of massive quiescent galaxies across 0.2 <z< 4.0, there is evidence for an evolution in the relation between the dynamical mass–stellar mass ratio and velocity dispersion as a function of redshift. This implies an IMF with fewer low-mass stars (e.g., Chabrier IMF) for massive quiescent galaxies at higher redshifts in conflict with the bottom-heavy IMF (e.g., Salpeter IMF) found in their likelyz∼ 0 descendants, though a number of alternative explanations such as a different dynamical structure or significant rotation are not ruled out. Similar to data at lower redshifts, we see evidence for an increase of IMF normalization with velocity dispersion, though thez≳ 3 trend is steeper than that forz∼ 0.2 early-type galaxies and offset to lower dynamical-to-stellar mass ratios.

     
    more » « less
  2. Abstract

    We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 <z< 5.9 in the COSMOS field that were [Cii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [Cii] at Early times (ALPINE). We separate these galaxies (“Cii-detected-all”) into lower-redshift (“Cii-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“Cii-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the Cii-detected-all and lz samples at ≳3σ. We find that the infrared–radio correlation of our sample, quantified byqTIR, is lower than the local relation for normal SFGs at a ∼3σsignificance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 <z< 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stackedqTIRs and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lowerqTIRto be a general property of high-redshift SFGs.

     
    more » « less
  3. ABSTRACT

    We present 10 main-sequence ALPINE galaxies (log (M/M⊙) = 9.2−11.1 and ${\rm SFR}=23-190\, {\rm M_{\odot }\, yr^{-1}}$) at z ∼ 4.5 with optical [O ii] measurements from Keck/MOSFIRE spectroscopy and Subaru/MOIRCS narrow-band imaging. This is the largest such multiwavelength sample at these redshifts, combining various measurements in the ultraviolet, optical, and far-infrared including [C ii]158 $\mu$m line emission and dust continuum from ALMA and H α emission from Spitzer photometry. For the first time, this unique sample allows us to analyse the relation between [O ii] and total star-formation rate (SFR) and the interstellar medium (ISM) properties via [O ii]/[C ii] and [O ii]/H α luminosity ratios at z ∼ 4.5. The [O ii]−SFR relation at z ∼ 4.5 cannot be described using standard local descriptions, but is consistent with a metal-dependent relation assuming metallicities around $50{{\ \rm per\ cent}}$ solar. To explain the measured dust-corrected luminosity ratios of $\log (L_{\rm [OII]}/L_{\rm [CII]}) \sim 0.98^{+0.21}_{-0.22}$ and $\log (L_{\rm [OII]}/L_{\rm H\alpha }) \sim -0.22^{+0.13}_{-0.15}$ for our sample, ionization parameters log (U) < −2 and electron densities $\log (\rm n_e / {\rm [cm^{-3}]}) \sim 2.5-3$ are required. The former is consistent with galaxies at z ∼ 2−3, however lower than at z > 6. The latter may be slightly higher than expected given the galaxies’ specific SFR. The analysis of this pilot sample suggests that typical log (M/M⊙) > 9 galaxies at z ∼ 4.5 to have broadly similar ISM properties as their descendants at z ∼ 2 and suggest a strong evolution of ISM properties since the epoch of reionization at z > 6.

     
    more » « less
  4. Abstract The discovery and spectroscopic confirmation of Hyperion, a protosupercluster at z ∼ 2.47, provides an unprecedented opportunity to study distant galaxies in the context of their large-scale environment. We carry out deep narrowband imaging of a ≈1° × 1° region around Hyperion and select 157 Ly α emitters (LAEs). The inferred LAE overdensity is δ g ≈ 40 within an effective volume of 30 × 20 × 15 cMpc 3 , consistent with the fact that Hyperion is composed of multiple protoclusters and will evolve into a supercluster with a total mass of M tot ≈ 1.4 × 10 15 M ⊙ at z = 0. The distribution of LAEs closely mirrors that of known spectroscopic members, tracing the protocluster cores and extended filamentary arms connected to them, suggesting that they trace the same large-scale structure. By cross-correlating the LAE positions with H i tomography data, we find weak evidence that LAEs may be less abundant in the highest H i regions, perhaps because Ly α is suppressed in such regions. The Hyperion region hosts a large population of active galactic nuclei (AGNs) ≈ 12 times more abundant than that in the field. The prevalence of AGNs in protocluster regions hints at the possibility that they may be triggered by physical processes that occur more frequently in dense environments, such as galaxy mergers. Our study demonstrates LAEs as reliable markers of the largest cosmic structures. When combined with ongoing and upcoming imaging and spectroscopic surveys, wide-field narrowband imaging has the potential to advance our knowledge in the formation and evolution of cosmic structures and of their galaxy inhabitants. 
    more » « less
  5. Utilizing spectroscopic observations taken for the VIMOS Ultra-Deep Survey (VUDS), new observations from Keck/DEIMOS, and publicly available observations of large samples of star-forming galaxies, we report here on the relationship between the star-formation rate (SFR) and the local environment ( δ gal ) of galaxies in the early universe (2 <  z  < 5). Unlike what is observed at lower redshifts ( z  ≲ 2), we observe a definite, nearly monotonic increase in the average SFR with increasing galaxy overdensity over more than an order of magnitude in δ gal . The robustness of this trend is quantified by accounting for both uncertainties in our measurements and galaxy populations that are either underrepresented or not present in our sample (e.g., extremely dusty star-forming and quiescent galaxies), and we find that the trend remains significant under all circumstances. This trend appears to be primarily driven by the fractional increase of galaxies in high-density environments that are more massive in their stellar content and are forming stars at a higher rate than their less massive counterparts. We find that, even after stellar mass effects are accounted for, there remains a weak but significant SFR– δ gal trend in our sample implying that additional environmentally related processes are helping to drive this trend. We also find clear evidence that the average SFR of galaxies in the densest environments increases with increasing redshift. These results lend themselves to a picture in which massive gas-rich galaxies coalesce into proto-cluster environments at z  ≳ 3, interact with other galaxies or with a forming large-scale medium, subsequently using or losing most of their gas in the process, and begin to seed the nascent red sequence that is present in clusters at slightly lower redshifts. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
    We present the first [C II] 158 μ m luminosity function (LF) at z  ∼ 5 from a sample of serendipitous lines detected in the ALMA Large Program to INvestigate [C II] at Early times (ALPINE). A study of the 118 ALPINE pointings revealed several serendipitous lines. Based on their fidelity, we selected 14 lines for the final catalog. According to the redshift of their counterparts, we identified eight out of 14 detections as [C II] lines at z  ∼ 5, along with two as CO transitions at lower redshifts. The remaining four lines have an elusive identification in the available catalogs and we considered them as [C II] candidates. We used the eight confirmed [C II] and the four [C II] candidates to build one of the first [C II] LFs at z  ∼ 5. We found that 11 out of these 12 sources have a redshift very similar to that of the ALPINE target in the same pointing, suggesting the presence of overdensities around the targets. Therefore, we split the sample in two (a “clustered” and “field” subsample) according to their redshift separation and built two separate LFs. Our estimates suggest that there could be an evolution of the [C II] LF between z  ∼ 5 and z  ∼ 0. By converting the [C II] luminosity to the star-formation rate, we evaluated the cosmic star-formation rate density (SFRD) at z  ∼ 5. The clustered sample results in a SFRD ∼10 times higher than previous measurements from UV–selected galaxies. On the other hand, from the field sample (likely representing the average galaxy population), we derived a SFRD ∼1.6 higher compared to current estimates from UV surveys but compatible within the errors. Because of the large uncertainties, observations of larger samples will be necessary to better constrain the SFRD at z  ∼ 5. This study represents one of the first efforts aimed at characterizing the demography of [C II] emitters at z  ∼ 5 using a mm selection of galaxies. 
    more » « less
  9. null (Ed.)
    We present ALMA observations of a merging system at z  ∼ 4.57, observed as a part of the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) survey. Combining ALMA [CII]158  μ m and far-infrared continuum data with multi-wavelength ancillary data, we find that the system is composed of two massive ( M ⋆  ≳ 10 10   M ⊙ ) star-forming galaxies experiencing a major merger (stellar mass ratio r mass  ≳ 0.9) at close spatial (∼13 kpc; projected) and velocity (Δ v  <  300 km s −1 ) separations, and two additional faint narrow [CII]-emitting satellites. The overall system belongs to a larger scale protocluster environment and is coincident to one of its overdensity peaks. Additionally, ALMA reveals the presence of [CII] emission arising from a circumgalactic gas structure, extending up to a diameter-scale of ∼30 kpc. Our morpho-spectral decomposition analysis shows that about 50% of the total flux resides between the individual galaxy components, in a metal-enriched gaseous envelope characterised by a disturbed morphology and complex kinematics. Similarly to observations of shock-excited [CII] emitted from tidal tails in local groups, our results can be interpreted as a possible signature of interstellar gas stripped by strong gravitational interactions, with a possible contribution from material ejected by galactic outflows and emission triggered by star formation in small faint satellites. Our findings suggest that mergers could be an efficient mechanism of gas mixing in the circumgalactic medium around high- z galaxies, and thus play a key role in the galaxy baryon cycle at early epochs. 
    more » « less