skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The molecular structure and curious motions in 1,1-difluorosilacyclopent-3-ene and silacyclopent-3-ene as determined by microwave spectroscopy and quantum chemical calculations
The molecules 1,1-difluorosilacyclopent-3-ene (3SiCPF 2 ) and silacyclopent-3-ene (3SiCP) have been synthesized and studied using chirped pulse, Fourier transform microwave (CP-FTMW) spectroscopy. For 3SiCP this is the first ever microwave study of the molecule and, for 3SiCPF 2 , the spectra reported in this work have been combined with that of previous work in a global fit. The spectra of each contain splitting which has been fit using a Hamiltonian consisting of semirigid and Coriolis coupling parameters. A refit of the original 3SiCPF 2 work was also carried out. All fits and approaches are reported. Analyses of the spectra provide evidence that the molecule is planar which is in agreement with the high-level calculations, but the source of the splitting in the spectra has not been determined.  more » « less
Award ID(s):
2019072 1841346
PAR ID:
10346015
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
4
ISSN:
1463-9076
Page Range / eLocation ID:
2454 to 2464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The one‐step synthesis of tetra‐substituted benzenes was accomplished via gold‐catalyzed diyne‐ene annulation. Distinguished from prior modification methods, this novel strategy undergoes formal [3+3] cyclization, producing polysubstituted benzenes with exceptional efficiency. The critical factor enabling this transformation was the introduction of amides, which were reported for the first time in gold catalysis as covalent nucleophilic co‐catalysts. This interesting protocol not only offers a new strategy to achieve functional benzenes with high efficiency, but also enlightens potential new reaction pathways within gold‐catalyzed alkyne activation processes. 
    more » « less
  2. We unravel, for the very first time, the formation pathways of hydroxyacetone (CH 3 COCH 2 OH), methyl acetate (CH 3 COOCH 3 ), and 3-hydroxypropanal (HCOCH 2 CH 2 OH), as well as their enol tautomers within mixed ices of methanol (CH 3 OH) and acetaldehyde (CH 3 CHO) analogous to interstellar ices in the ISM exposed to ionizing radiation at ultralow temperatures of 5 K. Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) and isotopically labeled ices, the reaction products were selectively photoionized allowing for isomer discrimination during the temperature-programmed desorption phase. Based on the distinct mass-to-charge ratios and ionization energies of the identified species, we reveal the formation pathways of hydroxyacetone (CH 3 COCH 2 OH), methyl acetate (CH 3 COOCH 3 ), and 3-hydroxypropanal (HCOCH 2 CH 2 OH) via radical–radical recombination reactions and of their enol tautomers (prop-1-ene-1,2-diol (CH 3 C(OH)CHOH), prop-2-ene-1,2-diol (CH 2 C(OH)CH 2 OH), 1-methoxyethen-1-ol (CH 3 OC(OH)CH 2 ) and prop-1-ene-1,3-diol (HOCH 2 CHCHOH)) via keto-enol tautomerization. To the best of our knowledge, 1-methoxyethen-1-ol (CH 3 OC(OH)CH 2 ) and prop-1-ene-1,3-diol (HOCH 2 CHCHOH) are experimentally identified for the first time. Our findings help to constrain the formation mechanism of hydroxyacetone and methyl acetate detected within star-forming regions and suggest that the hitherto astronomically unobserved isomer 3-hydroxypropanal and its enol tautomers represent promising candidates for future astronomical searches. These enol tautomers may contribute to the molecular synthesis of biologically relevant molecules in deep space due to their nucleophilic character and high reactivity. 
    more » « less
  3. Abstract Unidirectional magnetoresistance (UMR) has been observed in a variety of stacks with ferromagnetic/spin Hall material bilayer structures. In this work, UMR in antiferromagnetic insulator Fe2O3/Pt structure is reported. The UMR has a negative value, which is related to interfacial Rashba coupling and band splitting. Thickness‐dependent measurement reveals a potential competition between UMR and the unidirectional spin Hall magnetoresistance (USMR). This work reveals the existence of UMR in antiferromagnetic insulators/heavy metal bilayers and broadens the way for the application of antiferromagnet‐based spintronic devices. 
    more » « less
  4. Knowledge of highly excited rovibrational states of ozone isotopologues is of key importance for modelling the dynamics of exchange reactions, for understanding longstanding problems related to isotopic anomalies of the ozone formation, and for analyses of extra-sensitive laser spectral experiments currently in progress. This work is devoted to new theoretical study of high-energy states for the main isotopologue 48 O 3 = 16 O 16 O 16 O and for the family of 18 O-enriched isotopomers 50 O 3 = { 16 O 16 O 18 O, 16 O 18 O 16 O, 18 O 16 O 16 O} of the ozone molecule considered using a full-symmetry approach. Energies and wave functions of bound states near the dissociation threshold are computed in hyperspherical coordinates accounting for the permutation symmetry of three identical nuclei in 48 O 3 and of two identical nuclei in 50 O 3 , using the most accurate potential energy surface available now. The obtained vibrational band centers agree with observed ones with the root-mean-squares deviation of about 1 cm −1 , making the results appropriate for assignments and analyses of future experimental spectra. The levels delocalized between the three potential wells of ozone isomers are computed and analyzed. The states situated deep in the three (for 48 O 3 ) or two (for 50 O 3 ) equivalent potential wells have similar energies with negligible splitting. However, the states situated just below the potential barriers separating the wells, are split due to the tunneling between the wells resulting in the splitting of rovibrational sub-bands. We evaluate the amplitudes of the corresponding effects and consider possible perturbations in vibration–rotation bands due to interactions between three potential wells. Theoretical predictions for the splitting of observable band centers are provided for the first time. 
    more » « less
  5. null (Ed.)
    A covalently-linked dimer of two single-molecule magnets (SMMs), [Mn 6 O(O 2 CMe) 6 (1,3-ppmd) 3 ](ClO 4 ) 2 , has been synthesized from the reaction of [Mn 3 O(O 2 CMe) 6 (py) 3 ](ClO 4 ) with 1,3-phenylene- bis (pyridin-2-ylmethanone) dioxime (1,3-ppmdH 2 ). It contains two [Mn III 3 O] +7 triangular units linked by three 1,3-ppmd 2− groups into an [Mn 3 ] 2 dimer with D 3 symmetry. Solid-state dc and ac magnetic susceptibility measurements showed that each Mn 3 subunit retains its properties as an SMM with an S = 6 ground state. Magnetization vs. dc field sweeps on a single crystal reveal hysteresis loops below 1.3 K exhibiting exchange-biased quantum tunnelling of magnetization (QTM) steps with a bias field of +0.06 T. This is the first example of a dimer of SMMs showing a positive exchange bias of the QTM steps in the hysteresis loops, and it has therefore been subjected to a detailed analysis. Simulation of the loops determines that each Mn 3 unit is exchange-coupled with its neighbour primarily through the 1,3-ppmd 2− linkers, confirming a weak ferromagnetic inter-Mn 3 interaction of J 12 ≈ +6.5 mK ( Ĥ = −2 JŜ i · Ŝ j convention). High-frequency EPR studies of a microcrystalline powder sample enable accurate determination of the zero-field splitting parameters of the uncoupled Mn 3 SMMs, while also confirming the weak exchange interaction between the two SMMs within each [Mn 3 ] 2 dimer. The combined results emphasize the ability of designed covalent linkers to generate inter-SMM coupling of a particular sign and relative magnitude, and thus the ability of such linkers to modulate the quantum physics. As such, this work supports the feasibility of using designed covalent linkers to develop molecular oligomers of SMMs, or other magnetic molecules, as multi-qubit systems and/or other components of new quantum technologies. 
    more » « less