Conventional wastewater treatment processes can be tailored to recover organic carbon from wastewater as intracellular polyhydroxybutyrate (PHB) polymer granules while simultaneously meeting effluent discharge standards. Traditional applications of PHB as a bioplastic are hampered by its suboptimal properties (e.g., brittle), lack of efficient and sustainable approaches for recovering PHB from cells, and concerns about wastewater-derived impurities. In this study, we report on the conversion of PHB and its monomer acids – 3-hydroxybutyric acid (3HBA) and crotonic acid (CA) – under hydrothermal conditions (in condensed water at elevated temperature and pressure) to form propylene, a valuable chemical intermediate that self-separates from water. PHB depolymerization results in a mixture of 3HBA and CA, which can interconvert via (de)hydration reactions that vary with prevailing reaction conditions. Further hydrothermal conversion of the monomer acids yields propylene and CO2. Conversion of 3HBA occurs at lower temperatures than CA, and a new concerted dehydration-decarboxylation pathway is proposed, which differs from the sequential dehydration (3HBA to CA) and decarboxylation (CA to propylene and CO2) pathway reported for dry thermal conversion. A kinetics network model informed by experimental results reveals that CA conversion to propylene and CO2 proceeds predominantly via hydration to 3HBA followed by the concerted dehydration-decarboxylation pathway rather than by direct decarboxylation of CA. Demonstrative experiments using PHB-containing methanotrophic biomass show results consistent with the model, producing propylene at near-theoretical yields at lower temperatures than reported previously. 
                        more » 
                        « less   
                    
                            
                            Vapor-phase conversion of aqueous 3-hydroxybutyric acid and crotonic acid to propylene over solid acid catalysts
                        
                    
    
            Diverse sources of wastewater organic carbon can be microbially funneled into biopolymers like polyhydroxybutyrate (PHB) that can be further valorized by conversion to hydrocarbon fuels and industrial chemicals. We report the vapor-phase dehydration and decarboxylation of PHB-derived monomer acids, 3-hydroxybutyric acid (3HB) and crotonic acid (CA), in water to propylene over solid acid catalysts using a packed-bed continuous-flow reactor. Propylene yields increase with increased Brønsted acidity of catalysts, with amorphous silica–alumina and niobium phosphate yielding 52 and 60 %C (percent feedstock carbon, max 75 %C) of feedstock 3HB and CA, respectively; additional products include CO 2 and retro-aldol products (acetaldehyde and acetic acid). Deactivation studies indicate progressive and permanent steam deactivation of amorphous silica–alumina, while re-calcination partially recovers niobium phosphate activity. Experiments demonstrating sustained reactor operation over niobium phosphate provide a promising technology pathway for increasing valorization of organic-rich wastewater. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1804513
- PAR ID:
- 10346046
- Date Published:
- Journal Name:
- Catalysis Science & Technology
- Volume:
- 11
- Issue:
- 20
- ISSN:
- 2044-4753
- Page Range / eLocation ID:
- 6866 to 6876
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            With the ever-increasing demand for plastics, sustainable recycling methods are key necessities. The current plastics industry can manage to recycle only 10% of the 400 million metric tons of plastic produced globally. Waste plastics, in the current infrastructure, land up mostly in landfills. Although a lot of research efforts have been spent on processing and recycling co-mingled mixed plastics, energy-efficient sustainable and scalable routes for plastic upcycling are still lacking. Catalytic valorization of waste plastic feedstock is one of the potential scalable routes for plastic upcycling. Silica-alumina based materials, and zeolites have shown a lot of promise. A major interest lies in restricting catalyst deactivation, and refining product selectivity and yield for such catalytic processes. This article highlights ChemPren technology as a clean energy solution to waste plastic recycling. Co-mingled, mixed plastic feedstock along with spray dried, attrition resistant, ZSM-5 containing catalysts is preprocessed with an extruder to form optimally sized particles and fed into a fluidized bed reactor for short contact times to produce selectively and in high yields ethylenes, propylenes and butylenes. This techno-economic perspective indicates that the ChemPren technology can produce propylene at $0.16 per lb, whereas the current selling price of virgin propylene is $0.54 per lb. This technology can serve as a platform for mixed plastic upcycling, with more advancements necessary in the form of robust and resilient catalysts and reactor operation strategies for tuning product selectivity.more » « less
- 
            We report here the synthesis and polymerization of a novel disubstituted valerolactone, β-acetoxy-δ-methylvalerolactone, derived from the renewable feedstock triacetic acid lactone (TAL). The bulk polymerization proceeds to 45% equilibrium monomer conversion at room temperature using diphenyl phosphate as the organic catalyst. The resultant amorphous material displays a glass transition temperature of 25 °C. The ring opening polymerization (ROP) behavior of the disubstituted valerolactone was examined, and the enthalpy () and entropy *() of polymerization were calculated to be −25 ± 2 kJ mol −1 and −81 ± 5 mol −1 K −1 , respectively. The polymerization kinetics were also measured and compared to those of other substituted valerolactones reported in the literature. This report is the first to demonstrate the successful ROP of a disubstituted valerolactone as well as the first to establish the ROP of a derivative of TAL.more » « less
- 
            Biomass is a renewable carbon feedstock that can be converted to 5-hydroxymethylfurfural (HMF), a useful platform chemical that can be modified to produce valuable chemicals and fuels. Previous research has shown that high HMF selectivity can be achieved in organic solvents such as dimethyl sulfoxide (DMSO) because of its capability to stabilize HMF in solution, but DMSO is an undesirable solvent to use industrially as product separation from the reaction solution is difficult. Surface functionalization of porous catalysts has been shown as a method to introduce solvent-effects at the surface of heterogeneous catalysts, thus avoiding the need for high boiling solvents like DMSO. Poly(ethylene sulfoxide) (PESO) is added to the surface of sulfonic acid (SA) functionalized SBA-15 silica to obtain the bifunctional catalyst SA-PESO-SBA-15. Co-localization of the sulfoxide polymer with sulfonic acid groups inside the catalyst pores (SA-PESO-SBA-15) increased HMF selectivity to 51% from 26% obtained by monofunctional SA-SBA-15 at 27% fructose conversion in water. Additionally, this bifunctional catalyst performs best in 4 : 1 (w/w) THF : water cosolvent, a more industrially preferred cosolvent system, obtaining 79% HMF selectivity at 87% fructose conversion. Overall, these materials are promising for the selective conversion of fructose to HMF.more » « less
- 
            aims: Processing of cellulose can be used to produce value added renewable feedstock chemicals. background: Catalytic depolymerization and processing of cellulose can be used to produce value added renewable feedstock chemicals. objective: Development of an acidic ionic liquid - metal ion chloride catalyst system based single-reactor method for processing cellulose to value added products. method: The effect of metal chlorides as co-catalysts on 1-(1-propylsulfonic)-3-methylimidazolium chloride acidic ionic liquid catalyzed degradation of cellulose in 40 % (v/v) aq. ethanol was studied by measuring levulinic acid, ethyl levulinate and 5-hydroxymethylfurfural yields. result: In experiments with Mn(II), Zn(II) chloride co-catalysts at 160 and 170 °C for 12 h, the initial yields of ethyl levulinate and 5-hydroxymethylfurfural improved from ~ 7 % to ~ 12-15% due to co-catalytic effects. The highest enhancements in ethyl levulinate yields were observed with CrCl3, where the yield increased from 6 to 27 % with the addition of 10 mol% co-catalyst. conclusion: All three transition metal chlorides studied produced improvements in yields of secondary products, ethyl levulinate and 5-hydroxymethylfurfural in acidic ionic liquid catalyzed degradation of cellulose in aqueous ethanol. The most significant enhancements in ethyl levulinate yields were observed with CrCl3 as a co-catalyst. other: nonemore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    