skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biodiversity effects of food system sustainability actions from farm to fork
Diet shifts and food waste reduction have the potential to reduce the land and biodiversity footprint of the food system. In this study, we estimated the amount of land used to produce food consumed in the United States and the number of species threatened with extinction as a result of that land use. We predicted potential changes to the biodiversity threat under scenarios of food waste reduction and shifts to recommended healthy and sustainable diets. Domestically produced beef and dairy, which require vast land areas, and imported fruit, which has an intense impact on biodiversity per unit land, have especially high biodiversity footprints. Adopting the Planetary Health diet or the US Department of Agriculture (USDA)–recommended vegetarian diet nationwide would reduce the biodiversity footprint of food consumption. However, increases in the consumption of foods grown in global biodiversity hotspots both inside and outside the United States, especially fruits and vegetables, would partially offset the reduction. In contrast, the USDA-recommended US-style and Mediterranean-style diets would increase the biodiversity threat due to increased consumption of dairy and farmed fish. Simply halving food waste would benefit global biodiversity more than half as much as all Americans simultaneously shifting to a sustainable diet. Combining food waste reduction with the adoption of a sustainable diet could reduce the biodiversity footprint of US food consumption by roughly half. Species facing extinction because of unsustainable food consumption practices could be rescued by reducing agriculture's footprint; diet shifts and food waste reduction can help us get there.  more » « less
Award ID(s):
1724433
PAR ID:
10346084
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
15
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The production and consumption of food is one of the main drivers of environmental change globally. Meanwhile, many populations remain malnourished due to insufficient or unhealthy diets. Increasingly, dietary shifts are proposed as a means to address both environmental and health concerns. We have a limited understanding of how dietary shifts could alter where food is produced and consumed and how these changes would affect the distribution of environmental pressures both globally and across different groups of people. Here we combine new food flow data linking producing to consuming country with environmental pressures to estimate how a global shift to each of four diets (Indian, EAT-Lancet, Mediterranean, and mean Food Based Dietary Guidelines (FBDGs)) could affect environmental pressures at the global, country income group, and country level. Globally, cumulative pressures decrease under the Indian, EAT-Lancet, and Mediterranean scenarios and increase under FBDGs. On average, low income countries increase their cumulative consumption and production pressures while high income countries decrease their consumption pressures, and typically decrease their production pressures. Increases in low income countries are likely due to the nutritional inadequacy of current diets and the corresponding increases in consumption quantities with a shift to our diet scenarios. Despite these increases, we believe that three out four of our simulated dietary shifts can be seen as a net benefit by decreasing global pressures while low income countries increase pressures to adequately feed their populations. Additionally, considering principles of fairness applied, some nations are more responsible for causing historical environmental pressures and should shoulder more of the change. To facilitate more equitable shifts in global diets, resources, capacity, and knowledge sharing of sustainable agricultural practices are critical to minimize the increases in pressures that low income countries would incur to adequately feed their populations. 
    more » « less
  2. Abstract Phosphorus (P) and nitrogen (N) are essential nutrients for food production but their excess use in agriculture can have major social costs, particularly related to water quality degradation. Nutrient footprint approaches estimate N and P release to the environment through food production and waste management and enable linking these emissions to particular consumption patterns. Following an established method for quantifying a consumer-oriented N footprint for the United States (U.S.), we calculate an analogous P footprint and assess the N:P ratio across different stages of food production and consumption. Circa 2012, the average consumer’s P footprint was 4.4 kg P capita−1yr−1compared to 22.4 kg N capita−1yr−1for the food portion of the N footprint. Animal products have the largest contribution to both footprints, comprising >70% of the average per capita N and P footprints. The N:P ratio of environmental release based on virtual nutrient factors (kilograms N or P per kilogram of food consumed) varies considerably across food groups and stages. The overall N:P ratio of the footprints was lower (5.2 by mass) than for that of U.S. food consumption (8.6), reinforcing our finding that P is managed less efficiently than N in food production systems but more efficiently removed from wastewater. While strategies like reducing meat consumption will effectively reduce both N and P footprints by decreasing overall synthetic fertilizer nutrient demands, consideration of how food production and waste treatment differentially affect N and P releases to the environment can also inform eutrophication management. 
    more » « less
  3. Introduction The average American diet is high in red and processed meats which increases one's risk for chronic diseases and requires more land and water to produce and yields greater greenhouse gases (GHG) compared to other protein foods. Reduction of red and processed meat intake, such as seen with the Dietary Approaches to Stop Hypertension (DASH diet), could benefit human and environmental health. Objective The objective of this study is to predict the environmental sustainability of the DASH diet by evaluating the GHG, land use, and water withdrawals from protein foods within the self-selected diets of people who were encouraged to follow the DASH diet. Methods Dietary data was collected from 380 Midwesterners aged 35-70 years old with hypertension using the Automated Self-Administered 24-Hour (ASA 24) Recall System. DASH diet adherence was measured using a nutrient-based DASH score. GHG, land use, and water withdrawals were obtained using Carnegie Mellon University's Economic Input-Output Life Cycle Assessment ( eiolca.net ) using the Purchaser model (cradle-to-consumer). Multiple linear regressions were used to view associations between individual DASH nutrient scores and environmental impacts of total, animal, and plant protein foods. Results Diets that met DASH diet guidelines, as indicated by higher individual DASH nutrient scores, were associated with less GHG and land use from total and animal protein foods but more GHG and land use from plant-protein foods, with a few exceptions. The pattern was not clear for water withdrawals. Diets with the greatest adherence had around 25–50% lower GHG and land use from total protein foods than diets with the lowest adherence. Changes may be due to decreased consumption of total and animal protein foods, selection of animal protein foods with lower environmental impacts, and increased consumption of plant protein foods. Conclusion Adhering to the DASH diet can promote the consumption of less environmentally demanding protein foods resulting in lower GHG and land use from protein foods. However, claims regarding the sustainability of the entire dietary pattern cannot be determined based off the current study. Regardless, it is evident that environmental impacts should be considered alongside health impacts when selecting, promoting, or recommending a dietary pattern. 
    more » « less
  4. Land-use change may drive viral spillover from bats into humans, partly through dietary shifts caused by decreased availability of native foods and increased availability of cultivated foods. We experimentally manipulated diets of Jamaican fruit bats to investigate whether diet influences viral shedding. To reflect dietary changes experienced by wild bats during periods of nutritional stress, Jamaican fruit bats were fed either a standard diet or a putative suboptimal diet, which was deprived of protein (suboptimal-sugar diet) and/or supplemented with fat (suboptimal-fat diet). Upon H18N11 influenza A-virus infection, bats fed on the suboptimal-sugar diet shed the most viral RNA for the longest period, but bats fed the suboptimal-fat diet shed the least viral RNA for the shortest period. Bats on both suboptimal diets ate more food than the standard diet, suggesting nutritional changes may alter foraging behaviour. This study serves as an initial step in understanding whether and how dietary shifts may influence viral dynamics in bats, which alters the risk of spillover to humans. 
    more » « less
  5. Zero food waste city 2049: Identifying barriers to transition pathways Daniel Black, Ian Roderick, Adina Paytan, Sue Charlesworth and Joy Carey from an Urban Living Lab in the UK have tested newly integrated systems approaches and valuation methods to understand how to reduce the city's food waste. Food waste costs the UK billions of pounds each year and much of it is avoidable. The challenge for the WASTE FEW ULL research project was to produce and test methods for identifying inefficiencies in the food-energy-water (FEW) nexus in urban settings. Looking in particular at Bristol city, which throws away 48,000 tonnes of food waste each year, the team looked into how they could transform Bristol into a sustainable food city. Stakeholder concerns arose including the nutrient overload problem in water systems and the economic recovery of phosphate; the large amount of food waste from the city linked to food security issues; the energy and carbon footprint of the digestate produced from the anaerobic digestors; the economic challenges of reducing food waste; the plastic contamination of waste streams; sewage system blockages; and the difficulties of recycling sewage and wastewater. This research looks at the challenge of phosphorous recapture from sewage through extensive discussions agreed to shift the project focus to residential food waste reduction and processing (and the associated plastic contamination). The team eventually began looking at the critical concept of resilience and economic efficiency, working to substantially reduce inefficiencies in a city-regions FEW nexuses. 
    more » « less