Intermittent oil–water wetting can have a significant effect on the internal corrosion of steel pipelines. This paper presents a combined experimental and molecular modeling study of several influential factors on the surface properties and corrosion behavior of mild steel in CO2 environments. The influence of different model oils (LVT-200 and Aromatic-200) and select surface-active compounds (myristic acid, cyclohexane butyric acid, and oleic acid) on the corrosion behavior of carbon steel during intermittent oil–water wetting was determined by measuring the corrosion rate after intermittent wetting cycles. The interfacial tension measurements were performed to study the incorporation of the oil phase along with surface-active molecules in the protective layer formed on the specimen surface. Results showed that the interfacial tension for an aromatic oil–water interface is lower than that for an aliphatic oil–water interface. To understand this result, molecular dynamics simulations of oil–water interfaces were performed in the presence of surface-active molecules and different oils to analyze the structure of the layer formed at the interface. The simulations supported the hypothesis that aromatic molecules are less structured at the interface, which results in the incorporation of more water molecules into the protective layer formed at the steel surface, causing a higher corrosion rate. On the other hand, the simulations revealed that myristic acid in an aliphatic oil forms a well-aligned structure at the interface, devoid of any water molecules. This is in agreement with the hypothesis that the linear molecular structure of myristic acid favors the alignment of molecules at an aliphatic oil–water interface, resulting in a lower interfacial tension and more effective corrosion mitigation as compared to the other two nonlinear compounds tested. It is concluded that an important factor controlling the corrosion behavior is the molecular structure of the oil–water interface, which is adopted by the steel surface layer through the Langmuir–Blodgett process.
more »
« less
Lattice-Gas Model for Asphaltene Interactions Observed at Interfaces in the Context of the Yen-Mullins Model
ABSTRACT: The presence of asphaltene at both fluid−fluid and fluid−solid interfaces has a wide impact on petroleum recovery processes, for example, by stabilizing oil−gas−water dispersions, adsorbing on reservoir rock surfaces and thus changing their wetting properties, and forming deposits in oil−gas production systems. The Yen-Mullins model for asphaltene behavior in bulk fluids provides a framework for understanding a diverse range of phenomena related to the adsorption dynamics of asphaltene at interfaces and how the adsorbed layers are structured. In this work, we address the relatively less explored parameter, which is accounting for the size and shape of the particles on the interfacial properties and emulsion stability. We discuss our investigations of the asphaltene adsorption and its effects, focusing on oil−water interfaces, and propose a lattice-gas model to explain the experimental observations of the interfacial tension and rheology.
more »
« less
- Award ID(s):
- 1743794
- PAR ID:
- 10346091
- Date Published:
- Journal Name:
- Energy & Fuels
- ISSN:
- 0887-0624
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Charging of interfaces between water and hydrophobic media is a mysterious feature whose nature and origin have been under debate. Here, we investigate the fundamentals of the interfacial behaviors of water by employing opto-thermophoretic tweezers to study temperature-gradient-induced perturbation of dipole arrangement at water/oil interfaces. With surfactant-free perfluoropentane-in-water emulsions as a model interface, additional polar organic solvents are introduced to systematically modify the structural aspects of the interface. Through our experimental measurements on the thermophoretic behaviors of oil droplets under a light-generated temperature gradient, in combination with theoretical analysis, we propose that water molecules and mobile negative charges are present at the water/oil interfaces with specific dipole arrangement to hydrate oil droplets, and that this arrangement is highly susceptible to the thermal perturbation due to the mobility of the negative charges. These findings suggest a potential of opto-thermophoresis in probing aqueous interfaces and could enrich understanding of the interfacial behaviors of water.more » « less
-
Hydrate surface wettability is a fundamental aspect to better understand agglomeration present in oil bearing petroleum pipelines. Coupling these measurements with hydrate film growth gives further information on kinetic effects that may also be present from natural surfactants in different oils. In situ measurements of wettability (quantified by the contact angle) and film growth rates were performed on cyclopentane hydrate surfaces at atmospheric pressure and subcooling of 4 ◦C. Contact angle and film growth results were obtained for the baseline system (pure cyclopentane), one model oil, and seventeen natural oils (diluted to 0.02 vol% in cyclopentane). Results showed a wide variety of contact angles and film growth values where higher asphaltene contents in the oils corresponded to higher contact angles and lower film growth rates, thought to be from better alignment of natural surfactant molecules at the hydrate/hydrocarbon interface. It was also shown for select oils that increasing the oil concentration in the cyclopentane increases the contact angle and decreases the film growth rate compared to the baseline system. For select oils that had higher contact angles, increasing the water content of the system decreases their contact angle and film growth compared to the baseline system. Isolating different oil fractions for select oils also shows which fractions tend to play a larger role in wettability behavior. Typically, the fractions with more surface active components (asphaltene and resins) are shown to contribute to the higher contact angle and slower film growth rates for select oils. Evidence of the competition between film growth and capillary suction of water into the hydrate has been shown, and a mechanistic breakdown of three different transient scenarios has been proposed. Each of these observed interfacial behaviors gives information on what can be expected from larger scale phenomena, including hydrate agglomeration, with very small oil samples.more » « less
-
ABSTRACT The utilization of predictive mechanisms to resolve asphaltene precipitation during oil production is a cleaner and less expensive means than the mechanical/chemical remediation techniques currently employed. Existing models lack predictive success due to opposing views on temperature-asphaltene precipitation interactions. In this study, the effect of varying temperatures (40, 50, 60, 70 80 and 90 °C) and brine concentrations (0 – 5 wt.%) on the long-time kinetics of asphaltene precipitations was evaluated. A series of experiments were conducted using the filtration technique and the confocal microscopy to study asphaltene precipitation on a model oil system consisting of asphaltenes, a precipitant, and a solvent. Furthermore, the Avrami modeling technique was employed to predict the morphology, and growth rate of the precipitating asphaltenes. The experimental results suggested that temperature significantly affects asphaltene precipitation including imparting its precipitation mechanism with a cross-behavioral pattern. Asphaltene precipitation in the system displayed an initial fast kinetics upon increasing temperature. The fast kinetics observed in the early times is due to the increasing dipole-dipole interactions between asphaltene sub-micron particles stimulated by increased temperature. However, the pattern changes into slower precipitations as the time progresses upon continuous heating of the reservoir fluid. The reason is the increased solubility of the asphaltenes imparted into the model oil system upon further increments in temperature. The presence of brine in the model-oil system also enhanced the rate and precipitation of asphaltenes. The experimental data were further analyzed with the Avrami crystallization fitting model to predict the formation, growth, morphology, and growth geometry of the precipitating asphaltenes. The Avrami model successfully predicted the asphaltene morphologies, growth rates and the crystal growth geometries. The growth geometries (rods, discs, or spheres) of the asphaltenes in the model oil systems upon temperature increments, ranged from 1.4 – 3.5. These values are indicative that temperature impacts the growth process of asphaltenes in the model system causing variations from a rod-like sporadic process (1.0 ≤ n ≤ 1.9) to a spherical sporadic growth process (3.0 ≤ n ≤ 3.9). This work precisely emphasizes the impact of temperature on asphaltene precipitations under long kinetic time, thus, providing a clear pathway for developing successful kinetic and thermodynamic models capable of predicting asphaltene precipitation reliably. The accurate prediction of asphaltene precipitation will eliminate the need for the use of harmful remediation solvents like benzene/toluene/ethylbenzene/xylene (BTEX). This study is therefore a critical step in the right direction to achieving accurate predictive model evaluations of asphaltene precipitations.more » « less
-
Summary Asphaltene precipitation and deposition is considered one of the prevailing issues during carbon dioxide (CO2) gas injection in gas enhanced oil recovery techniques, which leads to pore plugging, oil recovery reduction, and damaged surface and subsurface equipment. This research provides a comprehensive investigation of the effect of immiscible and miscible CO2 gas injection in nanopore shale structures on asphaltene instability in crude oil. A slimtube was used to determine the minimum miscibility pressure (MMP) of the CO2. This step is important to ensure that the immiscible and miscible conditions will be achieved during the filtration experiments. For the filtration experiments, nanocomposite filter paper membranes were used to mimic the unconventional shale pore structure, and a specially designed filtration apparatus was used to accommodate the filter paper membranes. The uniform distribution (i.e., same pore size filters) was used to illustrate the influence of the ideal shale reservoir structure and to provide an idea on how asphaltene will deposit when utilizing the heterogeneous distribution (i.e., various pore size filters) that depicts the real shale structure. The factors investigated include immiscible and miscible CO2 injection pressures, temperature, CO2 soaking time, and pore size structure heterogeneity. Visualization tests were undertaken after the filtration experiments to provide a clear picture of the asphaltene precipitation and deposition process over time. The results showed an increase in asphaltene weight precent in all experiments of the filtration tests. The severity of asphaltene aggregations was observed at a higher rate under miscible CO2 injection. It was observed that the miscible conditions have a higher impact on asphaltene instability compared to immiscible conditions. The results revealed that the asphaltene deposition was almost equal across all the paper membranes for each pressure used when using a uniform distribution. Higher asphaltene weight percent were determined on smaller pore structures of the membranes when using heterogeneous distribution. Soaking time results revealed that increasing the soaking time resulted in an increase in asphaltene weight precent, especially for 60 and 120 minutes. Visualization tests showed that after 1 hour, the asphaltene clusters started to precipitate and could be seen in the uppermost section of the test tubes and were fully deposited after 12 hours with less clusters found in the supernatant. Also, smaller pore size of filter membranes showed higher asphaltene weight percent after the visualization test. Chromatography analysis provided further evaluation on how asphaltene was reduced though the filtration experiments. Microscopy and scanning electron microscopy (SEM) imaging of the filter paper membranes showed the severity of pore plugging in the structure of the membranes. This research highlights the impact of CO2 injection on asphaltene instability in crude oil in nanopore structures under immiscible and miscible conditions. The findings in this research can be used for further research of asphaltene deposition under gas injection and to scale up the results for better understanding of the main factors that may influence asphaltene aggregation in real shale unconventional reservoirs.more » « less