Asphaltenes are the heaviest and most polarizable fractions of crude oil. During the oil production process, changes in the temperature, pressure, and oil composition can destabilize asphaltenes. This destabilization leads to asphaltene aggregation and deposition, which can cause major clogging problems in both the wellbore and near-wellbore regions as well as the production facilities. In this study, we developed and investigated the application of acrylic acid and 2-acrylanmido-2-methylpropanesulfonic acid (AA–AMPS)-functionalized magnetic nanoparticles as a surface coating in inhibiting asphaltene deposition. The use of the porous media microfluidic platform allows for efficient evaluation of the effectiveness of the nanoparticle coating in mitigating asphaltene deposition in various crude oils. We demonstrated that the nanoparticle coating is effective in inhibiting asphaltene deposition, showing up to a 75% improvement in permeability change. The study also explores the dynamics of asphaltene aggregation and deposition in different crude oils. We identified factors such as asphaltene aggregate size as well as the physical and chemical characteristics of the aggregates that can determine the effectiveness of different mitigation methods.
more »
« less
Cyclopentane hydrate wettability measurements used to evaluate the efficacy of oil natural surfactants using ultra-low volume samples
Hydrate surface wettability is a fundamental aspect to better understand agglomeration present in oil bearing petroleum pipelines. Coupling these measurements with hydrate film growth gives further information on kinetic effects that may also be present from natural surfactants in different oils. In situ measurements of wettability (quantified by the contact angle) and film growth rates were performed on cyclopentane hydrate surfaces at atmospheric pressure and subcooling of 4 ◦C. Contact angle and film growth results were obtained for the baseline system (pure cyclopentane), one model oil, and seventeen natural oils (diluted to 0.02 vol% in cyclopentane). Results showed a wide variety of contact angles and film growth values where higher asphaltene contents in the oils corresponded to higher contact angles and lower film growth rates, thought to be from better alignment of natural surfactant molecules at the hydrate/hydrocarbon interface. It was also shown for select oils that increasing the oil concentration in the cyclopentane increases the contact angle and decreases the film growth rate compared to the baseline system. For select oils that had higher contact angles, increasing the water content of the system decreases their contact angle and film growth compared to the baseline system. Isolating different oil fractions for select oils also shows which fractions tend to play a larger role in wettability behavior. Typically, the fractions with more surface active components (asphaltene and resins) are shown to contribute to the higher contact angle and slower film growth rates for select oils. Evidence of the competition between film growth and capillary suction of water into the hydrate has been shown, and a mechanistic breakdown of three different transient scenarios has been proposed. Each of these observed interfacial behaviors gives information on what can be expected from larger scale phenomena, including hydrate agglomeration, with very small oil samples.
more »
« less
- Award ID(s):
- 2015201
- PAR ID:
- 10506650
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Fuel
- Volume:
- 355
- Issue:
- C
- ISSN:
- 0016-2361
- Page Range / eLocation ID:
- 129422
- Subject(s) / Keyword(s):
- Clathrate hydrates contact angle oil asphaltenes film growth
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Asphaltenes generally aggregate, then precipitate and deposit on the surfaces of environmental media (soil, sediment, aquifer, and aquitard). Previous studies have recognized the importance of asphaltene aggregates on the wettability of aquifer systems, which has long been regarded as a limiting factor that determines the feasibility and remediation efficiency of sites contaminated by heavy oils. However, the mechanisms/factors associated with precipitant effects on asphaltene aggregates structure, and how the precipitant effects influence the wettability of surfaces remain largely unknown. Here, we observe the particle-by-particle growth of asphaltene aggregates formed at different precipitant concentrations. Our results show that aggregates for all precipitant concentrations are highly polydisperse with self-similar structures. A higher precipitant concentration leads to a more compacted aggregates structure, while precipitant concentration near to onset point results in a less compact structure. The well-known Smoluchowski model is inadequate to describe the structural evolutions of asphaltene aggregates, even for aggregation scenarios induced by a precipitant concentration at the onset point where the Smoluchowski model is expected to explain the aggregate size distribution. It is suggested that aggregates with relative high fractal dimensions observed at high precipitant concentrations can be used to explain the relatively low Stokes settling velocities observed for large asphaltene aggregates. In addition, asphaltene aggregates with high fractal dimensions are likely to have high density of nanoscale roughness which could enhance the hydrophobicity of interfaces when they deposit on the sand surface. Findings obtained from this study advance our current understandings on the fate and transport of heavy oil contaminants in the subsurface environment, which will have important implications for designing and implementing more effective and efficient remediation technologies for contaminated sites.more » « less
-
ABSTRACT The utilization of predictive mechanisms to resolve asphaltene precipitation during oil production is a cleaner and less expensive means than the mechanical/chemical remediation techniques currently employed. Existing models lack predictive success due to opposing views on temperature-asphaltene precipitation interactions. In this study, the effect of varying temperatures (40, 50, 60, 70 80 and 90 °C) and brine concentrations (0 – 5 wt.%) on the long-time kinetics of asphaltene precipitations was evaluated. A series of experiments were conducted using the filtration technique and the confocal microscopy to study asphaltene precipitation on a model oil system consisting of asphaltenes, a precipitant, and a solvent. Furthermore, the Avrami modeling technique was employed to predict the morphology, and growth rate of the precipitating asphaltenes. The experimental results suggested that temperature significantly affects asphaltene precipitation including imparting its precipitation mechanism with a cross-behavioral pattern. Asphaltene precipitation in the system displayed an initial fast kinetics upon increasing temperature. The fast kinetics observed in the early times is due to the increasing dipole-dipole interactions between asphaltene sub-micron particles stimulated by increased temperature. However, the pattern changes into slower precipitations as the time progresses upon continuous heating of the reservoir fluid. The reason is the increased solubility of the asphaltenes imparted into the model oil system upon further increments in temperature. The presence of brine in the model-oil system also enhanced the rate and precipitation of asphaltenes. The experimental data were further analyzed with the Avrami crystallization fitting model to predict the formation, growth, morphology, and growth geometry of the precipitating asphaltenes. The Avrami model successfully predicted the asphaltene morphologies, growth rates and the crystal growth geometries. The growth geometries (rods, discs, or spheres) of the asphaltenes in the model oil systems upon temperature increments, ranged from 1.4 – 3.5. These values are indicative that temperature impacts the growth process of asphaltenes in the model system causing variations from a rod-like sporadic process (1.0 ≤ n ≤ 1.9) to a spherical sporadic growth process (3.0 ≤ n ≤ 3.9). This work precisely emphasizes the impact of temperature on asphaltene precipitations under long kinetic time, thus, providing a clear pathway for developing successful kinetic and thermodynamic models capable of predicting asphaltene precipitation reliably. The accurate prediction of asphaltene precipitation will eliminate the need for the use of harmful remediation solvents like benzene/toluene/ethylbenzene/xylene (BTEX). This study is therefore a critical step in the right direction to achieving accurate predictive model evaluations of asphaltene precipitations.more » « less
-
Microscopic insights on clathrate hydrate growth from non-equilibrium molecular dynamics simulationsClathrate hydrates form and grow at interfaces. Understanding the relevant molecular processes is crucial for developing hydrate-based technologies. Many computational studies focus on hydrate growth within the aqueous phase using the ‘direct coexistence method’, which is limited in its ability to investigate hydrate film growth at hydrocarbon-water interfaces. To overcome this shortcoming, a new simulation setup is presented here, which allows us to study the growth of a methane hydrate nucleus in a system where oil–water, hydrate-water, and hydrate-oil interfaces are all simultaneously present, thereby mimicking experimental setups. Using this setup, hydrate growth is studied here under the influence of two additives, a polyvinylcaprolactam oligomer and sodium dodecyl sulfate, at varying concentrations. Our results confirm that hydrate films grow along the oil–water interface, in general agreement with visual experimental observations; growth, albeit slower, also occurs at the hydrate-water interface, the interface most often interrogated via simulations. The results obtained demonstrate that the additives present within curved interfaces control the solubility of methane in the aqueous phase, which correlates with hydrate growth rate. Building on our simulation insights, we suggest that by combining data for the potential of mean force profile for methane transport across the oil–water interface and for the average free energy required to perturb a flat interface, it is possible to predict the performance of additives used to control hydrate growth. These insights could be helpful to achieve optimal methane storage in hydrates, one of many applications which are attracting significant fundamental and applied interests.more » « less
-
To investigate the utility of acrylic monomers from various plant oils in adhesives manufacturing, 25–45 wt. % of high oleic soybean oil-based monomer (HOSBM) was copolymerized in a miniemulsion with commercially applied butyl acrylate (BA), methyl methacrylate (MMA), or styrene (St). The compositions of the resulting ternary latex copolymers were varied in terms of both “soft” (HOSBM, BA) and “rigid” (MMA or St) macromolecular fragments, while total monomer conversion and molecular weight of copolymers were determined after synthesis. For most latexes, results indicated the presence of lower and higher molecular weight fractions, which is beneficial for the material adhesive performance. To correlate surface properties and adhesive performance of HOSBM-based copolymer latexes, contact angle hysteresis (using water as a contact liquid) for each latex-substrate pair was first determined. The data showed that plant oil-based latexes exhibit a clear ability to spread and adhere once applied on the surface of materials differing by polarities, such as semicrystalline polyethylene terephthalate (PET), polypropylene (PP), bleached paperboard (uncoated), and tops coated with a clay mineral paperboard. The effectiveness of plant oil-based ternary latexes as adhesives was demonstrated on PET to PP and coated to uncoated paperboard substrates. As a result, the latexes with high biobased content developed in this study provide promising adhesive performance, causing substrate failure instead of cohesive/adhesive break in many experiments.more » « less