skip to main content


Title: Unconventional mechanism and selectivity of the Pd-catalyzed C–H bond lactonization in aromatic carboxylic acid
Abstract

The search for more effective and highly selective C–H bond oxidation of accessible hydrocarbons and biomolecules is a greatly attractive research mission. The elucidating of mechanism and controlling factors will, undoubtedly, help to broaden scope of these synthetic protocols, and enable discovery of more efficient, environmentally benign, and highly practical new C–H oxidation reactions. Here, we reveal the stepwise intramolecular SN2 nucleophilic substitution mechanism with the rate-limiting C–O bond formation step for the Pd(II)-catalyzed C(sp3)–H lactonization in aromatic 2,6-dimethylbenzoic acid. We show that for this reaction, the direct C–O reductive elimination from both Pd(II) and Pd(IV) (oxidized by O2oxidant) intermediates is unfavorable. Critical factors controlling the outcome of this reaction are the presence of the η3-(π-benzylic)–Pd and K+–O(carboxylic) interactions. The controlling factors of the benzylic vs ortho site-selectivity of this reaction are the: (a) difference in the strains of the generated lactone rings; (b) difference in the strengths of the η3-(π-benzylic)–Pd and η2-(π-phenyl)–Pd interactions, and (c) more pronounced electrostatic interaction between the nucleophilic oxygen and K+cation in the ortho-C–H activation transition state. The presented data indicate the utmost importance of base, substrate, and ligand in the selective C(sp3)–H bond lactonization in the presence of C(sp2)–H.

 
more » « less
Award ID(s):
1700982
NSF-PAR ID:
10361482
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Described is a systematic comparison of factors impacting the relative rates and selectivities of C(sp3)−C and C(sp3)−O bond‐forming reactions at high‐valent Ni as a function of oxidation state. Two Ni complexes are compared: a cationic octahedral NiIVcomplex ligated by tris(pyrazolyl)borate and a cationic octahedral NiIIIcomplex ligated by tris(pyrazolyl)methane. Key features of reactivity/selectivity are revealed: 1) C(sp3)−C(sp2) bond‐forming reductive elimination occurs from both centers, but the NiIIIcomplex reacts up to 300‐fold faster than the NiIV, depending on the reaction conditions. The relative reactivity is proposed to derive from ligand dissociation kinetics, which vary as a function of oxidation state and the presence/absence of visible light. 2) Upon the addition of acetate (AcO), the NiIVcomplex exclusively undergoes C(sp3)−OAc bond formation, while the NiIIIanalogue forms the C(sp3)−C(sp2) coupled product selectively. This difference is rationalized based on the electrophilicity of the respective M−C(sp3) bonds, and thus their relative reactivity towards outer‐sphere SN2‐type bond‐forming reactions.

     
    more » « less
  2. Abstract

    Described is a systematic comparison of factors impacting the relative rates and selectivities of C(sp3)−C and C(sp3)−O bond‐forming reactions at high‐valent Ni as a function of oxidation state. Two Ni complexes are compared: a cationic octahedral NiIVcomplex ligated by tris(pyrazolyl)borate and a cationic octahedral NiIIIcomplex ligated by tris(pyrazolyl)methane. Key features of reactivity/selectivity are revealed: 1) C(sp3)−C(sp2) bond‐forming reductive elimination occurs from both centers, but the NiIIIcomplex reacts up to 300‐fold faster than the NiIV, depending on the reaction conditions. The relative reactivity is proposed to derive from ligand dissociation kinetics, which vary as a function of oxidation state and the presence/absence of visible light. 2) Upon the addition of acetate (AcO), the NiIVcomplex exclusively undergoes C(sp3)−OAc bond formation, while the NiIIIanalogue forms the C(sp3)−C(sp2) coupled product selectively. This difference is rationalized based on the electrophilicity of the respective M−C(sp3) bonds, and thus their relative reactivity towards outer‐sphere SN2‐type bond‐forming reactions.

     
    more » « less
  3. Abstract

    Undirected C(sp3)−H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C−H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C−H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C−H bonds over tertiary and benzylic C−H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C−H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C−H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R.and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R.to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C−H amidation selectivity in the absence of directing groups.

     
    more » « less
  4. Abstract

    Undirected C(sp3)−H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C−H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C−H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C−H bonds over tertiary and benzylic C−H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C−H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C−H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R.and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R.to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C−H amidation selectivity in the absence of directing groups.

     
    more » « less
  5. Abstract

    Some bacterial heme proteins catalyze the coupling of two NO molecules to generate N2O. We previously reported that a heme Fe–NO model engages in this N−N bond‐forming reaction with NO. We now demonstrate that (OEP)CoII(NO) similarly reacts with 1 equiv of NO in the presence of the Lewis acids BX3(X=F, C6F5) to generate N2O. DFT calculations support retention of the CoIIoxidation state for the experimentally observed adduct (OEP)CoII(NO⋅BF3), the presumed hyponitrite intermediate (P.+)CoII(ONNO⋅BF3), and the porphyrin π‐radical cation by‐product of this reaction, and that the π‐radical cation formation likely occurs at the hyponitrite stage. In contrast, the Fe analogue undergoes a ferrous‐to‐ferric oxidation state conversion during this reaction. Our work shows that cobalt hemes are chemically competent to engage in the NO‐to‐N2O conversion reaction.

     
    more » « less