Cyclical ground deformation, associated seismicity, and elevated degassing are important precursors to explosive eruptions at silicic volcanoes. Regular intervals for elevated activity (6–30 hr) have been observed at volcanoes such as Mount Pinatubo in the Philippines and Soufrière Hills in Montserrat. Here, we explore a hypothesis originally proposed by Michaut et al. (2013,
- Award ID(s):
- 2048430
- PAR ID:
- 10346136
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 942
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract https://doi.org/10.1038/ngeo1928 ) where porosity waves containing magmatic gas are responsible for the observed periodic behavior. We use two‐phase theory to construct a model where volatile‐rich, bubbly, viscous magma rises and decompresses. We conduct numerical experiments where magma gas waves with various frequencies are imposed at the base of the model volcanic conduit. We numerically verify the results of Michaut et al. (2013,https://doi.org/10.1038/ngeo1928 ) and then expand on the model by allowing magma viscosity to vary as a function of dissolved water and crystal content. Numerical experiments show that gas exsolution tends to damp the growth of porosity waves during decompression. The instability and resultant growth or decay of gas wave amplitude depends strongly on the gas density gradient and the ratio of the characteristic magma extraction rate to the characteristic magma degassing rate (Damköhler number, Da). We find that slow degassing can lead to a previously unrecognized filtering effect, where low‐frequency gas waves may grow in amplitude. These waves may set the periodicity of the eruptive precursors, such as those observed at Soufrière Hills Volcano. We demonstrate that degassed, crystal‐rich magma is susceptible to the growth of gas waves which may result in the periodic behavior. -
Abstract Many volcanoes around the world are persistently active with continuous degassing for years or even centuries, sometimes exceeding historic records. Such long‐term stability contrasts with short‐term instability, reflected in eruptive episodes that punctuate passive degassing. These two aspects of persistent activity, long‐term stability as opposed to short‐term instability, are often conceptualized through two distinct model frameworks: Exchange‐flow in volcanic conduits is commonly invoked to explain the long‐term thermal balance and sustained passive degassing, while the ascent of large gas slugs is called upon to understand explosive eruptions. While typically considered separately, we propose here that both flow processes could occur jointly in the conduits of persistently active volcanoes and in transient connections between subvolcanic melt lenses. To understand the dynamic interplay between exchange flow and slug ascent, we link analogue laboratory experiments with direct numerical simulations. We find that the two flows superimpose without creating major disruptions when only considering the ascent of a single gas slug. However, the sequential ascent of multiple gas slugs is disruptive to the ambient exchange flow, because it may entail continual buildup of buoyant magma at depth. While our study focuses on the laboratory scale, we propose that the dependence of exchange‐flow stability on sequential slug ascent is relevant for understanding why explosive sequences are sometimes followed by effusive eruptions. Taken together, our work suggests that integrating exchange flow and slug ascent could provide a more complete understanding of persistently active volcanoes than either model framework offers in isolation.
-
Abstract Persistent volcanic activity is thought to be linked to degassing, but volatile transport at depth cannot be observed directly. Instead, we rely on indirect constraints, such as CO2‐H2O concentrations in melt inclusions trapped at different depth, but this data is rarely straight‐forward to interpret. In this study, we integrate a multiscale conduit‐flow model for non‐eruptive conditions and a volatile‐concentration model to compute synthetic profiles of volatile concentrations for different flow conditions and CO2fluxing. We find that actively segregating bubbles in the flow enhance the mixing of volatile‐poor and volatile‐rich magma in vertical conduit segments, even if the radius of these bubbles is several orders of magnitude smaller than the width of the conduit. This finding suggests that magma mixing is common in volcanic systems when magma viscosities are low enough to allow for bubble segregation as born out by our comparison with melt‐inclusion data: Our simulations show that even a small degree of mixing leads to volatile concentration profiles that are much more comparable to observations than either open‐ or closed‐system degassing trends for both Stromboli and Mount Erebus. Our results also show that two of the main processes affecting observed volatile concentrations, magma mixing and CO2fluxing, leave distinct observational signatures, suggesting that tracking them jointly could help better constrain changes in conduit flow. We argue that disaggregating melt‐inclusion data based on the eruptive behavior at the time could advance our understanding of how conduit flow changes with eruptive regimes.
-
Abstract Thallium (Tl) isotope ratios are an emerging tool that can be used to trace crustal recycling processes in arc lavas and ocean island basalts (OIBs). Thallium is a highly volatile metal that is enriched in volcanic fumaroles, but it is unknown whether degassing of Tl from subaerial lavas has a significant effect on their residual Tl isotope compositions. Here, we present Tl isotope and concentration data from degassing experiments that are best explained by Rayleigh kinetic isotope fractionation during Tl loss. Our data closely follow predicted isotope fractionation models in which TlCl is the primary degassed species and where Tl loss is controlled by diffusion and natural convection, consistent with the slow gas advection velocity utilized during our experiments. We calculate that degassing into air should be associated with a net Tl isotope fractionation factor of
α net = 0.99969 for diffusion and natural gas convection (low gas velocities) andα net = 0.99955 for diffusion and forced gas convection (high gas velocities). We also show that lavas from three volcanoes in the Kamchatka arc exhibit Tl isotope and concentration patterns that plot in between the two different gas convection regimes, implying that degassing played an important role in controlling the observed Tl isotope compositions in these three volcanoes. Literature inspection of Tl isotope data for subaerial lavas reveals that the majority of these appear only minorly affected by degassing, although a few samples from both OIBs and arc volcanoes can be identified that likely experienced some Tl degassing. -
Abstract Quantifying the global volcanic CO2output from subaerial volcanism is key for a better understanding of rates and mechanisms of carbon cycling in and out of our planet and their consequences for the long‐term evolution of Earth's climate over geological timescales. Although having been the focus of intense research since the early 1990s, and in spite of recent progress, the global volcanic CO2output remains inaccurately known. Here we review past developments and recent progress and examine limits and caveats of our current understanding and challenges for future research. We show that CO2flux measurements are today only available for ~100 volcanoes (cumulative measured flux, 44 Tg CO2/year), implying that extrapolation is required to account for the emissions of the several hundred degassing volcanoes worldwide. Recent extrapolation attempts converge to indicate that persistent degassing through active crater fumaroles and plumes releases ~53–88 Tg CO2/year, about half of which is released from the 125 most actively degassing subaerial volcanoes (36.4 ± 2.4 Tg CO2/year from strong volcanic gas emitters,
S vge). The global CO2output sustained by diffuse degassing via soils, volcanic lakes, and volcanic aquifers is even less well characterized but could be as high as 83 to 93 Tg CO2/year, rivaling that from the far more manifest crater emissions. Extrapolating these current fluxes to the past geological history of the planet is challenging and will require a new generation of models linking subduction parameters to magma and volatile (CO2) fluxes.