skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solution Synthesis of Sb 2 S 3 and Na 3 SbS 4 Solid-State Electrolyte
Sodium thioantimonate (Na 3 SbS 4 ) is an attractive solid-state electrolyte for sodium-ion batteries due to its high ionic conductivity and stability in protic solvents. Herein, we describe solution-based routes for its synthesis. First, we demonstrate the synthesis of the Sb 2 S 3 precursor via thermodynamically favorable metathesis between Na 2 S and SbCl 3 . This solution-based approach is further extended to couple the resulting Sb 2 S 3 with Na 2 S for the synthesis of Na 3 SbS 4 . It is shown that ethanol is a superior solvent to water for solution-based synthesis of Na 3 SbS 4 with respect to yield, morphology, and performance. Amorphous Sb 2 S 3 synthesized from low-temperature metathesis produced highly crystalline Na 3 SbS 4 with a room temperature Na + conductivity of 0.52 mS cm −1 and low activation energy, comparable to leading values reported in the literature.  more » « less
Award ID(s):
1825470
PAR ID:
10346251
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
168
Issue:
11
ISSN:
0013-4651
Page Range / eLocation ID:
110533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Li 2 S is the key precursor for synthesizing thio-LISICON electrolytes employed in solid state batteries. However, conventional synthesis techniques such as carbothermal reduction of Li 2 SO 4 aren't suitable for the generation of low-cost, high-purity Li 2 S. Metathesis, in which LiCl is reacted with Na 2 S in ethanol, is a scalable synthesis method conducted at ambient conditions. The NaCl byproduct is separated from the resulting Li 2 S solution, and the solvent is removed by evaporation and thermal annealing. However, the annealing process reveals the presence of oxygenated impurities in metathesis Li 2 S that are not usually observed when recovering Li 2 S from ethanol. In this work we investigate the underlying mechanism of impurity formation, finding that they likely derive from the decomposition of alkoxide species that originate from the alcoholysis of the Na 2 S reagent. With this mechanism in mind, several strategies to improve Li 2 S purity are explored. In particular, drying the metathesis Li 2 S under H 2 S at low temperature was most effective, resulting in high-purity Li 2 S while retaining a beneficial nanocrystal morphology (∼10 nm). Argyrodite electrolytes synthesized from this material exhibited essentially identical phase purity, ionic conductivity (3.1 mS cm −1 ), activation energy (0.19 eV), and electronic conductivity (6.4 × 10 −6 mS cm −1 ) as that synthesized from commercially available battery-grade Li 2 S. 
    more » « less
  2. Abstract All‐solid‐state potassium batteries emerge as promising alternatives to lithium batteries, leveraging their high natural abundance and cost‐effectiveness. Developing potassium solid electrolytes (SEs) with high room‐temperature ionic conductivity is critical for realizing efficient potassium batteries. In this study, we present the synthesis of K2.98Sb0.91S3.53Cl0.47, showcasing a room‐temperature ionic conductivity of 0.32 mS/cm and a low activation energy of 0.26 eV. This represents an increase of over two orders of magnitude compared to the parent compound K3SbS4, marking the highest reported ionic conductivity for non‐oxide potassium SEs. Solid‐state39K magic‐angle‐spinning nuclear magnetic resonance on K2.98Sb0.91S3.53Cl0.47reveals an increased population of mobile K+ions with fast dynamics. Ab initio molecular dynamics (AIMD) simulations further confirm a delocalized K+density and significantly enhanced K+diffusion. This work demonstrates diversification of the anion sublattice as an effective approach to enhance ion transport and highlights K2.98Sb0.91S3.53Cl0.47as a promising SE for all‐solid‐state potassium batteries. 
    more » « less
  3. Abstract A new compound NaCd4Sb3(Rm,a=4.7013(1) Å,c=35.325(1), Å, Z=3,T=100 K) featuring the RbCd4As3structure type has been discovered in the Na−Cd−Sb system, in addition to the previously reported NaCdSb phase. NaCd4Sb3and NaCdSb were herein synthesized using sodium hydride as the source of sodium. The hydride method allows for targeted sample composition, improved precursor mixing, and an overall quicker synthesis time when compared to traditional methods using Na metal as a precursor. The NaCd4Sb3structure was determined from single‐crystal X‐ray diffraction and contained the splitting of a Cd site not seen in previous isostructural phases. NaCd4Sb3decomposes into NaCdSb plus melt at 766 K, as determined viain‐situhigh‐temperature PXRD. The electronic structure calculations predict the NaCd4Sb3phase to be semi‐metallic, which compliments the measured thermoelectric property data, indicative of ap‐type semi‐metallic material. The crystal structure, elemental analysis, thermal properties, and electronic structure are herein discussed in further detail. 
    more » « less
  4. Abstract All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3−yPS4−xClx, are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x= 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm−1at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4(t‐Na3PS4). The activation energy (Ea) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3with a reversible capacity of ≈100 mAh g‐1at room temperature. 
    more » « less
  5. Abstract Over the past decade, solid‐state batteries have garnered significant attentions due to their potentials to deliver high energy density and excellent safety. Considering the abundant sodium (Na) resources in contrast to lithium (Li), the development of sodium‐based batteries has become increasingly appealing. Sulfide‐based superionic conductors are widely considered as promising solid eletcrolytes (SEs) in solid‐state Na batteries due to the features of high ionic conductivity and cold‐press densification. In recent years, tremendous efforts have been made to investigate sulfide‐based Na‐ion conductors on their synthesis, compositions, conductivity, and the feasibility in batteries. However, there are still several challenges to overcome for their practical applications in high performance solid‐state Na batteries. This article provides a comprehensive update on the synthesis, structure, and properties of three dominant sulfide‐based Na‐ion conductors (Na3PS4, Na3SbS4, and Na11Sn2PS12), and their families that have a variety of anion and cation doping. Additionally, the interface stability of these sulfide electrolytes toward the anode is reviewed, as well as the electrochemical performance of solid‐state Na batteries based on different types of cathode materials (metal sulfides, oxides, and organics). Finally, the perspective and outlook for the development and practical utilization of sulfide‐based SE in solid‐state batteries are discussed. 
    more » « less