Speculative execution side-channel vulnerabilities in micro-architecture processors have raised concerns about the security of Intel SGX. To understand clearly the security impact of this vulnerability against SGX, this paper makes the following studies: First, to demonstrate the feasibility of the attacks, we present SgxPectre Attacks (the SGX-variants of Spectre attacks) that exploit speculative execution side-channel vulnerabilities to subvert the confidentiality of SGX enclaves. We show that when the branch prediction of the enclave code can be influenced by programs outside the enclave, the control flow of the enclave program can be temporarily altered to execute instructions that lead to observable cache-state changes. An adversary observing such changes can learn secrets inside the enclave memory or its internal registers, thus completely defeating the confidentiality guarantee offered by SGX. Second, to determine whether real-world enclave programs are impacted by the attacks, we develop techniques to automate the search of vulnerable code patterns in enclave binaries using symbolic execution. Our study suggests that nearly any enclave program could be vulnerable to SgxPectre Attacks since vulnerable code patterns are available in most SGX runtimes (e.g., Intel SGX SDK, Rust-SGX, and Graphene-SGX). Third, we apply SgxPectre Attacks to steal seal keys and attestation keys frommore »
SyML: Guiding Symbolic Execution Toward Vulnerable States Through Pattern Learning
Exploring many execution paths in a binary program is essential to discover new vulnerabilities. Dynamic Symbolic Execution (DSE) is useful to trigger complex input conditions and enables an accurate exploration of a program while providing extensive crash replayability and semantic insights.
However, scaling this type of analysis to complex binaries is difficult. Current methods suffer from the path explosion problem, despite many attempts to mitigate this challenge (e.g., by merging paths when appropriate). Still, in general, this challenge is not yet surmounted, and most bugs discovered through such techniques are shallow.
We propose a novel approach to address the path explosion problem: A smart triaging system that leverages supervised machine learning techniques to replicate human expertise, leading to vulnerable path discovery. Our approach monitors the execution traces in vulnerable programs and extracts relevant features—register and memory accesses, function complexity, system calls—to guide the symbolic exploration. We train models to learn the patterns of vulnerable paths from the extracted features, and we leverage their predictions to discover interesting execution paths in new programs.
We implement our approach in a tool called SyML, and we evaluate it on the Cyber Grand Challenge (CGC) dataset—a well-known dataset of vulnerable programs—and on 3 real-world Linux binaries. We more »
- Award ID(s):
- 1704253
- Publication Date:
- NSF-PAR ID:
- 10346374
- Journal Name:
- RAID '21: 24th International Symposium on Research in Attacks, Intrusions and Defenses
- Page Range or eLocation-ID:
- 456 to 468
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The recent paradigm shift introduced by the Internet of Things (IoT) has brought embedded systems into focus as a target for both security analysts and malicious adversaries. Typified by their lack of standardized hardware, diverse software, and opaque functionality, IoT devices present unique challenges to security analysts due to the tight coupling between their firmware and the hardware for which it was designed. In order to take advantage of modern program analysis techniques, such as fuzzing or symbolic execution, with any kind of scale or depth, analysts must have the ability to execute firmware code in emulated (or virtualized) environments. However, these emulation environments are rarely available and cumbersome to create through manual reverse engineering, greatly limiting the analysis of binary firmware. In this work, we explore the problem of firmware re-hosting, the process by which firmware is migrated from its original hardware environment into a virtualized one. We show that an approach capable of creating virtual, interactive environments in an automated manner is a necessity to enable firmware analysis at scale. We present the first proof-of-concept system aiming to achieve this goal, called PRETENDER, which uses observations of the interactions between the original hardware and the firmware to automaticallymore »
-
Detecting regression bugs in software evolution, analyzing side-channels in programs and evaluating robustness in deep neural networks (DNNs) can all be seen as instances of differential software analysis, where the goal is to generate diverging executions of program paths. Two executions are said to be diverging if the observable program behavior differs, e.g., in terms of program output, execution time, or (DNN) classification. The key challenge of differential software analysis is to simultaneously reason about multiple program paths, often across program variants. This paper presents HyDiff, the first hybrid approach for differential software analysis. HyDiff integrates and extends two very successful testing techniques: Feedback-directed greybox fuzzing for efficient program testing and shadow symbolic execution for systematic program exploration. HyDiff extends greybox fuzzing with divergence-driven feedback based on novel cost metrics that take into account the control flow graph of the program. Furthermore HyDiff extends shadow symbolic execution by applying four-way forking in a systematic exploration and still having the ability to incorporate concrete inputs in the analysis. HyDiff applies divergence revealing heuristics based on resource consumption and control-flow information to efficiently guide the symbolic exploration, which allows its efficient usage beyond regression testing applications. We introduce differential metrics such asmore »
-
Concolic testing combines concrete execution with symbolic execution along the executed path to automatically generate new test inputs that exercise program paths and deliver high code coverage during testing. The GKLEE tool uses this approach to expose data races in CUDA programs written for execution of GPGPUs. In programs employing concurrent dynamic data structures, automatic generation of data structures with appropriate shapes that cause threads to follow selected, possibly divergent, paths is a challenge. Moreover, a single non-conflicting data structure must be generated for multiple threads, that is, a single shape must be found that simultaneously causes all threads to follow their respective chosen paths. When an execution exposes a bug (e.g., a data race), the generated data structure shape helps the programmer understand the cause of the bug. Because GKLEE does not permit pointers that construct dynamic data structures to be made symbolic, it cannot automatically generate data structures of different shapes and must rely on the user to write code that constructs them to exercise desired paths. We have developed DSGEN for automatically generating non-conflicting dynamic data structures with different shapes and integrated it with GKLEE to uncover and facilitate understanding of data races in programs that employmore »
-
Just, René ; Fraser, Gordon (Ed.)Starting with a random initial seed, fuzzers search for inputs that trigger bugs or vulnerabilities. However, fuzzers often fail to generate inputs for program paths guarded by restrictive branch conditions. In this paper, we show that by first identifying rare-paths in programs (i.e., program paths with path constraints that are unlikely to be satisfied by random input generation), and then, generating inputs/seeds that trigger rare-paths, one can improve the coverage of fuzzing tools. In particular, we present techniques 1) that identify rare paths using quantitative symbolic analysis, and 2) generate inputs that can explore these rare paths using path-guided concolic execution. We provide these inputs as initial seed sets to three state of the art fuzzers. Our experimental evaluation on a set of programs shows that the fuzzers achieve better coverage with the rare-path based seed set compared to a random initial seed.