skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rare Path Guided Fuzzing
Starting with a random initial seed, fuzzers search for inputs that trigger bugs or vulnerabilities. However, fuzzers often fail to generate inputs for program paths guarded by restrictive branch conditions. In this paper, we show that by first identifying rare-paths in programs (i.e., program paths with path constraints that are unlikely to be satisfied by random input generation), and then, generating inputs/seeds that trigger rare-paths, one can improve the coverage of fuzzing tools. In particular, we present techniques 1) that identify rare paths using quantitative symbolic analysis, and 2) generate inputs that can explore these rare paths using path-guided concolic execution. We provide these inputs as initial seed sets to three state of the art fuzzers. Our experimental evaluation on a set of programs shows that the fuzzers achieve better coverage with the rare-path based seed set compared to a random initial seed.  more » « less
Award ID(s):
2008660 1817242 1901098
PAR ID:
10440734
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Just, René; Fraser, Gordon
Date Published:
Journal Name:
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2023
Page Range / eLocation ID:
1295 to 1306
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fuzz testing has been gaining ground recently with substantial efforts devoted to the area. Typically, fuzzers take a set of seed inputs and leverage random mutations to continually improve the inputs with respect to a cost, e.g. program code coverage, to discover vulnerabilities or bugs. Following this methodology, fuzzers are very good at generating unstructured inputs that achieve high coverage. However fuzzers are less effective when the inputs are structured, say they conform to an input grammar. Due to the nature of random mutations, the overwhelming abundance of inputs generated by this common fuzzing practice often adversely hinders the effectiveness and efficiency of fuzzers on grammar-aware applications. The problem of testing becomes even harder, when the goal is not only to achieve increased code coverage, but also to nd complex vulnerabilities related to other cost measures, say high resource consumption in an application. We propose Saffron an adaptive grammar-based fuzzing approach to effectively and efficiently generate inputs that expose expensive executions in programs. Saffron takes as input a user-provided grammar, which describes the input space of the program under analysis, and uses it to generate test inputs. Saffron assumes that the grammar description is approximate since precisely describing the input program space is often difficult as a program may accept unintended inputs due to e.g., errors in parsing. Yet these inputs may reveal worst-case complexity vulnerabilities. The novelty of Saffron is then twofold: (1) Given the user-provided grammar, Saffron attempts to discover whether the program accepts unexpected inputs outside of the provided grammar, and if so, it repairs the grammar via grammar mutations. The repaired grammar serves as a specification of the actual inputs accepted by the application. (2) Based on the refined grammar, it generates concrete test inputs. It starts by treating every production rule in the grammar with equal probability of being used for generating concrete inputs. It then adaptively refines the probabilities along the way by increasing the probabilities for rules that have been used to generate inputs that improve a cost, e.g., code coverage or arbitrary user-defined cost. Evaluation results show that Saffron significantly outperforms state-of-the-art baselines. 
    more » « less
  2. While many real-world programs are shipped with configurations to enable/disable functionalities, fuzzers have mostly been applied to test single configurations of these programs. In this work, we first conduct an empirical study to understand how program configurations affect fuzzing performance. We find that limiting a campaign to a single configuration can result in failing to cover a significant amount of code. We also observe that different program configurations contribute differing amounts of code coverage, challenging the idea that each one can be efficiently fuzzed individually. Motivated by these two observations, we propose ConfigFuzz , which can fuzz configurations along with normal inputs. ConfigFuzz transforms the target program to encode its program options within part of the fuzzable input, so existing fuzzers’ mutation operators can be reused to fuzz program configurations. We instantiate ConfigFuzz on six configurable, common fuzzing targets, and integrate their executions in FuzzBench. In our evaluation, ConfigFuzz outperforms two baseline fuzzers in four targets, while the results are mixed in the other targets due to program size and configuration space. We also analyze the options fuzzed by ConfigFuzz and how they affect the performance. 
    more » « less
  3. Fuzz testing repeatedly assails software with random inputs in order to trigger unexpected program behaviors, such as crashes or timeouts, and has historically revealed serious security vulnerabilities. In this article, we present HotFuzz, a framework for automatically discovering Algorithmic Complexity (AC) time and space vulnerabilities in Java libraries. HotFuzz uses micro-fuzzing, a genetic algorithm that evolves arbitrary Java objects in order to trigger the worst-case performance for a method under test. We define Small Recursive Instantiation (SRI) as a technique to derive seed inputs represented as Java objects to micro-fuzzing. After micro-fuzzing, HotFuzz synthesizes test cases that triggered AC vulnerabilities into Java programs and monitors their execution in order to reproduce vulnerabilities outside the fuzzing framework. HotFuzz outputs those programs that exhibit high resource utilization as witnesses for AC vulnerabilities in a Java library. We evaluate HotFuzz over the Java Runtime Environment (JRE), the 100 most popular Java libraries on Maven, and challenges contained in the DARPA Space and Time Analysis for Cybersecurity (STAC) program. We evaluate SRI’s effectiveness by comparing the performance of micro-fuzzing with SRI, measured by the number of AC vulnerabilities detected, to simply using empty values as seed inputs. In this evaluation, we verified known AC vulnerabilities, discovered previously unknown AC vulnerabilities that we responsibly reported to vendors, and received confirmation from both IBM and Oracle. Our results demonstrate that micro-fuzzing finds AC vulnerabilities in real-world software, and that micro-fuzzing with SRI-derived seed inputs outperforms using empty values in both the temporal and spatial domains. 
    more » « less
  4. Precise crash triage is important for automated dynamic testing tools, like fuzzers. At scale, fuzzers produce millions of crashing inputs. Fuzzers use heuristics, like stack hashes, to cut down on duplicate bug reports. These heuristics are fast, but often imprecise: even after deduplication, hundreds of uniquely reported crashes can still correspond to the same bug. Remaining crashes must be inspected manually, incurring considerable effort. In this paper we present Semantic Crash Bucketing, a generic method for precise crash bucketing using program transformation. Semantic Crash Bucketing maps crashing inputs to unique bugs as a function of changing a program (i.e., a semantic delta). We observe that a real bug fix precisely identifies crashes belonging to the same bug. Our insight is to approximate real bug fixes with lightweight program transformation to obtain the same level of precision. Our approach uses (a) patch templates and (b) semantic feedback from the program to automatically generate and apply approximate fixes for general bug classes. Our evaluation shows that approximate fixes are competitive with using true fixes for crash bucketing, and significantly outperforms built-in deduplication techniques for three state of the art fuzzers. 
    more » « less
  5. Fuzzing reliably and efficiently finds bugs in software, including operating system kernels. In general, higher code coverage leads to the discovery of more bugs. This is why most existing kernel fuzzers adopt strategies to generate a series of inputs that attempt to greedily maximize the amount of code that they exercise. However, simply executing code may not be sufficient to reveal bugs that require specific sequences of actions. Synthesizing inputs to trigger such bugs depends on two aspects: (i) the actions the executed code takes, and (ii) the order in which those actions are taken. An action is a high-level operation, such as a heap allocation, that is performed by the executed code and has a specific semantic meaning. ACTOR, our action-guided kernel fuzzing framework, deviates from traditional methods. Instead of focusing on code coverage optimization, our approach generates fuzzer programs (inputs) that leverage our understanding of triggered actions and their temporal relationships. Specifically, we first capture actions that potentially operate on shared data structures at different times. Then, we synthesize programs using those actions as building blocks, guided by bug templates expressed in our domain-specific language. We evaluated ACTOR on four different versions of the Linux kernel, including two well-tested and frequently updated long-term (5.4.206, 5.10.131) versions, a stable (5.19), and the latest (6.2-rc5) release. Our evaluation revealed a total of 41 previously unknown bugs, of which 9 have already been fixed. Interestingly, 15 (36.59%) of them were discovered in less than a day. 
    more » « less