A Local Hybrid Observer for a Class of Hybrid Dynamical Systems with Linear Maps and Unknown Jump Times
- Award ID(s):
- 2039054
- PAR ID:
- 10346469
- Date Published:
- Journal Name:
- Proceedings of the 60th IEEE Conference on Decision and Control
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this paper, we explore the possibility of search-based agents in games with resource-intensive forward models. We implemented a player agent in the Pommerman framework and put it against the baseline agent to measure its performance. We implemented a heuristic agent and improved it by enabling depth-limited tree search in specific gameplay moments. We also compared different node selection methods during depth-limited tree search. Our result shows that depth-limited tree search is still viable when presented with inefficient forward models and exploitation-driven selection method is the most efficient in this specific domain.more » « less
-
Zeeman slowers come in two commonly used types: electromagnet-based slowers and permanent-magnet slowers. Both have characteristic advantages and disadvantages. The electric currents required to create strong magnetic fields lead to heat dissipation that limits the achievable fields, while permanent-magnet slowers cause bias magnetic fields at the position of the magneto-optical trap. Here, we combine both approaches and their advantages at our lithium-6 triangular-lattice quantum gas microscope and extend the field of an electromagnet-based Zeeman slower using permanent magnets. We observe nearly doubled loading rates of the magneto-optical trap and no significant stray fields in the trapping region. Our approach allows for a stronger magnetic field in places where geometric constraints prevent the use of coils, and it provides a low-cost upgrade to the loading rate at established experiments.more » « less
An official website of the United States government

