We examined the X-ray and radio spatial structure at the eastern ear of the W 50/SS 433 system to clarify a characteristic feature of the termination region of the SS 433 jet, and found that a hot spot ahead of the filament structure, which is considered to be a terminal shock of the SS 433 eastern jet, is clearly different from a single point source. The detailed spatial structure of the X-ray emission is finely resolved by Chandra observations, showing that there are two sources. By comparing the point-spread function of Chandra with the radial profiles of the two sources, the northern one is clearly more extended than a point source while the other seems marginally extended. Since there are no point sources nearby, the northern hot spot is likely a localized diffuse source. The northern hot spot spatially corresponds to the peak of the radio emission. Its spatial correlation is confirmed by an X-ray image using XMM-Newton. The X-ray spectra of the two sources are reproduced by a single absorbed power-law but the column density of the northern part is larger by a factor of ∼3. When a radiation model comprising synchrotron emission and inverse Compton emission is applied to the spectral energy distribution of the northern hot spot, the emission from this spot can be explained by the radiation from an electron population accelerated up to 30 TeV in a magnetic field strength of B ≲ 50 μG. This model also agrees with the radio and X-ray data, as well as the upper limit of gamma-ray emission obtained by the Fermi satellite.
- Award ID(s):
- 2009820
- NSF-PAR ID:
- 10346544
- Date Published:
- Journal Name:
- Nature
- Volume:
- 597
- Issue:
- 7874
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 41 to 44
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
ABSTRACT We present a statistical analysis of the He ii 4686 emission line in the spectra of the black hole and Wolf–Rayet (WR) star of the high-mass X-ray binary IC10 X-1. This line is visibly skewed, and the third moment (skewness) varies with the binary’s orbital phase. We describe a new method of extracting such weak/faint features lying barely above a noisy continuum. Using the moments of these features, we have been able to decompose these skewed lines into two symmetric Gaussian profiles as a function of the orbital phase. The astrophysical implications of this decomposition are significant due to the complex nature of wind–accretion stream interactions in such binary systems. Previous studies have already shown a 0.25 phase lag in the radial velocity curve of the star and the X-ray eclipse, which indicates that the He ii emitters might be in the stellar wind, hence not tracing the star’s orbital motion. Results from this work further suggest the existence of two separate emitting regions, one in the stellar wind in the shadow of the WR star and another in the accretion stream that impacts the black hole’s outer accretion disc; and the observed skewed He ii lines can be reproduced by superposition of the two corresponding time-dependent Gaussian emission profiles.
-
ABSTRACT We reanalyse archival X-ray data of 16 Ae/Be Herbig stars obtained by the XMM–Newton and Chandra satellites. Stellar X-ray spectra in the energy range 0.2–8 keV were fitted with the use of APEC and MEKAL hot plasma emission models, and with models with an additional power-law component. We find that for Herbig stars, the dependence of the unabsorbed X-ray luminosity on stellar mass and radius, LX ∝ RαMβ with α ≈ 3 and β ≈ 2, is similar to that for T Tauri stars. The independently determined accretion rates, rotation periods, and the surface magnetic fields follow a tight correlation predicted by the standard magnetospheric accretion theory. We suggest that X-ray emission from Herbig stars is powered by magnetic reconnection events in the tenuous corona at the disc–magnetosphere boundary.
-
ABSTRACT We present a model of a viscously evolving accretion disc around a magnetized neutron star. The model features the varying outer radius of the hot ionized part of the disc due to cooling and the varying inner radius of the disc due to interaction with the magnetosphere. It also includes hindering of accretion on the neutron star because of the centrifugal barrier and irradiation of the outer disc and companion star by X-rays from the neutron star and disc. When setting inner boundary conditions, we take into account that processes at the inner disc occur on a time-scale much less than the viscous time-scale of the whole disc. We consider three types of outflow from the disc inner edge: zero outflow, one based on MHD calculations, and a very efficient propeller mechanism. The light curves of an X-ray transient after the outburst peak can be calculated by a corresponding, publicly available code. We compare observed light curves of the 2013 burst of Aql X-1 in X-ray and optical bands with modelled ones. We find that the fast drop of the 0.3–10 keV flux can be solely explained by a radial shrinking of the hot disc. At the same time, models with the neutron star magnetic field >108 G have better fits because the accretion efficiency behaviour emphasizes the ‘knee’ on the light curve. We also find that a plato emission can be produced by a `disc-reservoir' with stalled accretion.
-
ABSTRACT We present a rapid timing analysis of optical (HiPERCAM and ULTRACAM) and X-ray (NICER) observations of the X-ray transient Swift J1858.6−0814 during 2018 and 2019. The optical light curves show relatively slow, large amplitude (∼1 mag in gs) ‘blue’ flares (i.e. stronger at shorter wavelengths) on time-scales of ∼minutes as well as fast, small amplitude (∼0.1 mag in gs) ‘red’ flares (i.e. stronger at longer wavelengths) on time-scales of ∼seconds. The ‘blue’ and ‘red’ flares are consistent with X-ray reprocessing and optically thin synchrotron emission, respectively, similar to what is observed in other X-ray binaries. The simultaneous optical versus soft- and hard-band X-ray light curves show time- and energy-dependent correlations. The 2019 March 4 and parts of the June data show a nearly symmetric positive cross-correlations (CCFs) at positive lags consistent with simple X-ray disc reprocessing. The soft- and hard-band CCFs are similar and can be reproduced if disc reprocessing dominates in the optical and one component (disc or synchrotron Comptonization) dominates both the soft and hard X-rays. A part of the 2019 June data shows a very different CCFs. The observed positive correlation at negative lag in the soft band can be reproduced if the optical synchrotron emission is correlated with the hot flow X-ray emission. The observed timing properties are in qualitative agreement with the hybrid inner hot accretion flow model, where the relative role of the different X-ray and optical components that vary during the course of the outburst, as well as on shorter time-scales, govern the shape of the optical/X-ray CCFs.