- Award ID(s):
- 2002577
- PAR ID:
- 10437031
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 939
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We describe the first observations of the same celestial object with gravitational waves and light. ▪ GW170817 was the first detection of a neutron star merger with gravitational waves. ▪ The detection of a spatially coincident weak burst of gamma-rays (GRB 170817A) 1.7 s after the merger constituted the first electromagnetic detection of a gravitational wave source and established a connection between at least some cosmic short gamma-ray bursts (SGRBs) and binary neutron star mergers. ▪ A fast-evolving optical and near-infrared transient (AT 2017gfo) associated with the event can be interpreted as resulting from the ejection of ∼0.05 M ⊙ of material enriched in r-process elements, finally establishing binary neutron star mergers as at least one source of r-process nucleosynthesis. ▪ Radio and X-ray observations revealed a long-rising source that peaked ∼160,d after the merger. Combined with the apparent superluminal motion of the associated very long baseline interferometry source, these observations show that the merger produced a relativistic structured jet whose core was oriented ≈20 deg from the line of sight and with properties similar to SGRBs. The jet structure likely results from interaction between the jet and the merger ejecta. ▪ The electromagnetic and gravitational wave information can be combined to produce constraints on the expansion rate of the Universe and the equation of state of dense nuclear matter. These multimessenger endeavors will be a major emphasis of future work.more » « less
-
ABSTRACT Precursors have been observed seconds to minutes before some short gamma-ray bursts. While the precursor origins remain unknown, one explanation relies on the resonance of neutron star pulsational modes with the tidal forces during the inspiral phase of a compact binary merger. In this paper, we present a model for short gamma-ray burst precursors that relies on tidally resonant neutron star oceans. In this scenario, the onset of tidal resonance in the crust–ocean interface mode ignites the precursor flare, possibly through the interaction between the excited neutron star ocean and the surface magnetic fields. From just the precursor total energy, the time before the main event, and a detected quasi-periodic oscillation frequency, we may constrain the binary parameters and neutron star ocean properties. Our model can immediately distinguish neutron star–black hole mergers from binary neutron star mergers without gravitational wave detection. We apply our model to GRB 211211A, the recently detected long duration short gamma-ray burst with a quasi-periodic precursor, and explore the parameters of this system. The precursor of GRB 211211A is consistent with a tidally resonant neutron star ocean explanation that requires an extreme mass ratio neutron star–black hole merger and a high-mass neutron star. While difficult to reconcile with the main gamma-ray burst and associated kilonova, our results constrain the possible precursor mechanisms in this system. A systematic study of short gamma-ray burst precursors with the model presented here can test precursor origin and probe the possible connection between gamma-ray bursts and neutron star–black hole mergers.
-
ABSTRACT Gamma-ray burst GRB 211211A may have been the result of a neutron star merger at ≈350 Mpc. However, none of the LIGO–Virgo detectors were operating at the time. We show that the gravitational-wave signal from a GRB 211211A-like binary neutron star inspiral in the next LIGO–Virgo–KAGRA observing run (O4) would be below the conventional detection threshold, however a coincident gamma-ray burst observation would provide necessary information to claim a statistically significant multimessenger observation. We calculate that with O4 sensitivity, approximately $11{{\ \rm per\ cent}}$ of gamma-ray bursts within 600 Mpc will produce a confident association between the gravitational-wave binary neutron star inspiral signature and the prompt gamma-ray signature. This corresponds to a coincident detection rate of $0.22^{+8.3}_{-0.22}\,\mathrm{yr^{-1}}$, where the uncertainties are the 90 per cent confidence intervals arising from uncertainties in the absolute merger rate, beaming and jet-launching fractions. These increase to approximately $34{{\ \rm per\ cent}}$ and $0.71^{+26.8}_{-0.70}\,\mathrm{yr^{-1}}$ with proposed O5 sensitivity. We show that the above numbers do not depend significantly on the number of gravitational-wave observatories operating with the specific sensitivity. That is, the number of confident joint gamma-ray burst and gravitational-wave detections is only marginally improved with two or three detectors operating compared to a single detector. It is therefore worth considering whether one detector with sufficient sensitivity (post O4) should remain in sky-watch mode at all times to elucidate the true nature of GRB 211211A-like events, a proposal we discuss in detail.
-
Abstract The gamma-ray burst (GRB) GRB 211211A is believed to have occurred due to the merger of two neutron stars or a neutron star and a black hole, despite its duration of more than a minute. Subsequent analysis has revealed numerous interesting properties including the possible presence of a ∼22 Hz quasiperiodic oscillation (QPO) during precursor emission. Here we perform timing analysis of Fermi and Swift gamma-ray data on GRB 211211A and, although we do not find a strong QPO during the precursor, we do find an extremely significant 19.5 Hz flux oscillation, which has higher fractional amplitude at higher energies, in a ∼0.2 s segment beginning ∼1.6 s after the start of the burst. After presenting our analysis we discuss possible mechanisms for the oscillation.
-
null (Ed.)ABSTRACT Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively nearby events. We use late-time radio observations of short duration gamma-ray bursts (sGRBs) to constrain this model. Two samples of events were studied: four sGRBs that are possibly in the local (<200 Mpc) Universe were selected to constrain the remnant non-thermal emission from the sub-relativistic ejecta, whereas 17 sGRBs at cosmological distances were used to constrain the presence of a proto-magnetar central engine, possibly re-energizing the merger ejecta. We consider the case of GRB 170817A/GW170817 and find that in this case the early radio emission may be quenched by the jet blast-wave. In all cases, for ejecta mass range of ${M}_{\rm {ej}}\lesssim 10^{-2}\, (5\times 10^{-2})\, \mathrm{M}_\odot$, we can rule out very energetic merger ejecta ${E}_{\rm {ej}}\gtrsim 5\times 10^{52}\, (10^{53})\, \rm erg$, thus excluding the presence of a powerful magnetar as a merger remnant.more » « less