- Award ID(s):
- 1906030
- PAR ID:
- 10346665
- Date Published:
- Journal Name:
- npj 2D Materials and Applications
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2397-7132
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Photocatalytic reduction of carbon monoxide (CO), an increasingly available and low-cost feedstock that could benefit from CO 2 reduction, to high value-added multi-carbon chemicals, is significant for desirable carbon cycling, as well as high efficiency conversion and high density storage of solar energy. However, developing low cost but highly active photocatalysts with long-term stability for CO coupling and reduction remains a great challenge. Herein, by density functional theory (DFT) computations and taking advantage of the frustrated Lewis pairs (FLPs) concept, we identified a complex consisting of single boron (B) atom decorated on the optically active C 2 N monolayer ( i.e. , B/C 2 N) as an efficient and stable photocatalyst for CO reduction. On the designed B/C 2 N catalyst, CO can be efficiently reduced to ethylene (C 2 H 4 ) and propylene (C 3 H 6 ) both with a free energy increase of 0.22 eV for the potential-determining step, which greatly benefits from the pull–push function of the B–N FLPs composed of the decorating B atom and host N atoms. Moreover, the newly designed B/C 2 N catalyst shows significant visible light absorption with a suitable band position for CO reduction to C 2 H 4 and C 3 H 6 . All these unique features make the B/C 2 N photocatalyst an ideal candidate for visible light driven CO reduction to high value-added multi-carbon fuels and chemicals.more » « less
-
In this study, we report the length dependence of thermal conductivity ( k ) of zinc blende-structured Zinc Selenide (ZnSe) and Zinc Telluride (ZnTe) for length scales between 10 nm and 10 μm using first-principles computations, based on density-functional theory. The k value of ZnSe is computed to decrease significantly from 22.9 W m −1 K −1 to 1.8 W m −1 K −1 as the length scale is diminished from 10 μm to 10 nm. The k value of ZnTe is also observed to decrease from 12.6 W m −1 K −1 to 1.2 W m −1 K −1 for the same decrease in length. We also measured the k of bulk ZnSe and ZnTe using the Frequency Domain Thermoreflectance (FDTR) technique and observed a good agreement between the FDTR measurements and first principles calculations for bulk ZnSe and ZnTe. Understanding the thermal conductivity reduction at the nanometer length scale provides an avenue to incorporate nanostructured ZnSe and ZnTe for thermoelectric applications.more » « less
-
This paper presents three-photon absorption (3PA) measurement results for nine direct-gap semiconductors, including full 3PA spectra for ZnSe, ZnS, and GaAs. These results, along with our theory of 3PA using an eight-band Kane model (four bands with double spin degeneracy), help to explain the significant disagreements between experiments and theory in the literature to date. 3PA in the eight-band model exhibits quantum interference between the various possible pathways that is not observed in previous two-band theories. We present measurements of degenerate 3PA coefficients in InSb, GaAs, CdTe, CdSe, ZnTe, CdS, ZnSe, ZnO, and ZnS. We examine bandgap,
, scaling using -band tunneling and perturbation theories that show agreement with the predicted dependence; however, for those semiconductors for which we measured full 3PA spectra, we observe significant discrepancies with both two-band theories. On the other hand, our eight-band model shows excellent agreement with the spectral data. We then use our eight-band theory to predict the 3PA spectra for 15 different semiconductors in their zinc-blende form. These results allow prediction and interpretation of the 3PA coefficients for various narrow to wide bandgap semiconductors. -
Abstract Photocatalytic CO2reduction with water to hydrocarbons represents a viable and sustainable process toward greenhouse gas reduction and fuel/chemical production. Development of more efficient catalysts is the key to mitigate the limits in photocatalytic processes. Here, a novel ultrathin‐film photocatalytic light absorber (UFPLA) with TiO2films to design efficient photocatalytic CO2conversion processes is created. The UFPLA structure conquers the intrinsic trade‐off between optical absorption and charge carrier extraction efficiency, that is, a solar absorber should be thick enough to absorb majority of the light allowable by its bandgap but thin enough to allow charge carrier extraction for reactions. The as‐obtained structures significantly improve TiO2photocatalytic activity and selectivity to oxygenated hydrocarbons than the benchmark photocatalyst (Aeroxide P25). Remarkably, UFPLAs with 2‐nm‐thick TiO2films result in hydrocarbon formation rates of 0.967 mmol g−1h−1, corresponding to 1145 times higher activity than Aeroxide P25. This observation is confirmed by femtosecond transient absorption spectroscopic experiments where longer charge carrier lifetimes are recorded for the thinner films. The current work demonstrates a powerful strategy to control light absorption and catalysis in CO2conversion and, therefore, creates new and transformative ways of converting solar energy and greenhouse gas to alcohol fuels/chemicals.
-
Exciting progress has been made in the area of solar fuel generation by CO 2 reduction. New photocatalytic materials containing well-defined surface catalytic sites have emerged in recent years, including heterogenized molecular catalysts and single atom catalysts. This Feature Article summarizes our recent research in this area, together with brief discussions of relevant literature. In our effort to obtain heterogenized molecular catalysts, a diimine-tricarbonyl Re( i ) complex and a tetraaza macrocyclic Co( iii ) compound were covalently attached to different surfaces, and the effects of ligand derivatization and surface characteristics on their structures and photocatalytic activities were investigated. Single atom catalysts combine the advantages of homogeneous and heterogeneous catalysis. A single-site cobalt catalyst was prepared on graphitic carbon nitride, which demonstrated excellent activity in selective CO 2 reduction under visible-light irradiation. Doping carbon nitride with carbon was found to have profound effects on the structure and activity of the single-site cobalt catalyst. Our research achievements are presented to emphasize how spectroscopic techniques, including infrared, UV-visible, electron paramagnetic resonance, and X-ray absorption spectroscopies, could be combined with catalyst synthesis and computation modeling to understand the structures and properties of well-defined surface catalytic sites at the molecular level. This article also highlights challenges and opportunities in the broad context of solar CO 2 reduction.more » « less