Atopic dermatitis (AD) is a chronic inflammatory disease that affects approximately 2-5% of adults worldwide. The pathogenesis of AD continues to be a well-debated point of conjecture, with numerous hypotheses having been proposed. AD conditions are associated with increased populations of Staphylococcus aureus and reduced skin lipids. In this study, we evaluate the ability of S. aureus to permeate across human stratum corneum (SC) exhibiting both normal and depleted lipid conditions consistent with AD. This permeation would enable bacteria to interact with underlying viable epidermal cells, which could serve as a trigger for inflammation and disease onset. Our results indicate that permeation of S. aureus through SC exhibiting normal lipid conditions is not statistically significant. However, bacteria can readily permeate through lipid depleted tissue over a 9-d period. These findings suggest that S. aureus may potentially act as the mechanistic cause, rather than merely the result of AD.
more »
« less
Mechanisms and Implications of Bacterial Invasion across the Human Skin Barrier
ABSTRACT Atopic dermatitis (AD) is associated with a deficiency of skin lipids, increased populations of Staphylococcus aureus in the microbiome, and structural defects in the stratum corneum (SC), the outermost layer of human skin. However, the pathogenesis of AD is ambiguous, as it is unclear whether observed changes are the result of AD or contribute to the pathogenesis of the disease. Previous studies have shown that S. aureus is capable of permeating across isolated human SC tissue when lipids are depleted to levels consistent with AD conditions. In this study, we expand upon this discovery to determine the mechanisms and implications of bacterial penetration into the SC barrier. Specifically, we establish if bacteria are permeating intercellularly or employing a combination of both inter- and intracellular travel. The mechanical implications of bacterial invasion, lipid depletion, and media immersion are also evaluated using a newly developed, physiologically relevant, temperature-controlled drip chamber. Results reveal for the first time that S. aureus can be internalized by corneocytes, indicating transcellular movement through the tissue during permeation, consistent with previous theoretical models. S. aureus also degrades the mechanical integrity of human SC, particularly when the tissue is partially depleted of lipids. These observed mechanical changes are likely the cause of broken or ruptured tissue seen as exudative lesions in AD flares. This work further highlights the necessity of lipids in skin microbial barrier function. IMPORTANCE Millions of people suffer from the chronic inflammatory skin disease atopic dermatitis (AD), whose symptoms are associated with a deficiency of skin lipids that exhibit antimicrobial functions and increased populations of the opportunistic pathogen Staphylococcus aureus . However, the pathogenesis of AD is ambiguous, and it remains unclear if these observed changes are merely the result of AD or contribute to the pathogenesis of the disease. In this article, we demonstrate the necessity of skin lipids in preventing S. aureus from penetrating the outermost barrier of human skin, thereby causing a degradation in tissue integrity. This bacterial permeation into the viable epidermis could act as an inflammatory trigger of the disease. When coupled with delipidated AD tissue conditions, bacterial permeation can also explain increased tissue fragility, potentially causing lesion formation in AD patients that results in further enhancing bacterial permeability across the stratum corneum and the development of chronic conditions.
more »
« less
- Award ID(s):
- 1653071
- PAR ID:
- 10346724
- Editor(s):
- Claesen, Jan
- Date Published:
- Journal Name:
- Microbiology Spectrum
- Volume:
- 10
- Issue:
- 3
- ISSN:
- 2165-0497
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The skin is our outer permeability and immune defense barrier against myriad external assaults. Aryl hydrocarbon receptor (AhR) senses environmental factors and regulates barrier robustness and immune homeostasis. AhR agonists have been approved by the FDA for psoriasis treatment and are in clinical trials for the treatment of atopic dermatitis (AD), but the underlying mechanism of action remains poorly defined. Here, we report thatOVOL1/Ovol1is a conserved and direct transcriptional target of AhR in epidermal keratinocytes. We show that OVOL1/Ovol1 influences AhR-mediated regulation of keratinocyte gene expression and thatOVOL1/Ovol1ablation in keratinocytes impairs the barrier-promoting function of AhR, exacerbating AD-like inflammation. Mechanistically, we have identified Ovol1’s direct downstream targets genome-wide and provided in vivo evidence supporting the role ofId1as a functional target in barrier maintenance, disease suppression, and neutrophil accumulation. Furthermore, our findings reveal that an IL-1/dermal γδT cell axis exacerbates type 2 and 3 immune responses downstream of barrier perturbation inOvol1-deficient AD skin. Finally, we present data suggesting the clinical relevance of OVOL1 and ID1 functions in human AD skin. Our study highlights a keratinocyte-intrinsic AhR-Ovol1-Id1 regulatory axis that promotes both epidermal and immune homeostasis in the context of skin inflammation, identifying new therapeutic targets.more » « less
-
Solvent and Crystallization Effects on the Dermal Absorption of Hydrophilic and Lipophilic CompoundsThis study probes the mechanisms by which volatile solvents (water, ethanol) and a nonionic surfactant (Triton X-100) influence the skin permeation of dissolved solutes following deposition of small doses onto unoccluded human skin. A secondary objective was to sharpen guidelines for the use of these and other simple solvent systems for dermal safety testing of cosmetic ingredients at finite doses. Four solutes were studied – niacinamide, caffeine, testosterone and geraniol – at doses close to that estimated to saturate the upper layers of the stratum corneum. Methods included tensiometry, visualization of spreading on skin, polarized light microscopy and in vitro permeation testing using radiolabeled solutes. Ethanol, aqueous ethanol and dilute aqueous Triton solutions all yielded surface tensions below 36 mN/m, allowing them to spread easily on the skin, unlike water (72.4 mN/m) which did not spread. Deposition onto skin of niacinamide (32 ug·cm^2) or caffeine (3.2 ug·cm^2) from water and ethanol led to crystalline deposits on the skin surface, whereas the same amounts applied from aqueous ethanol and 2% Triton did not. Skin permeation of these compounds was inversely correlated to the extent of crystallization. A separate study with caffeine showed the absence of a dose-related skin permeability increase with Triton. Permeation of testosterone (8.2 ug·cm^2) was modestly increased when dosed from aqueous ethanol versus ethanol. Permeation of geraniol (2.9 ug·cm^2) followed the order aqueous ethanol > water ~ 2% Triton >> ethanol and was inversely correlated with evaporative loss. We conclude that, under the conditions tested, aqueous ethanol and Triton serve primarily as deposition aids and do not substantially disrupt stratum corneum lipids. Implications for the design of in vitro skin permeability tests are discussed.more » « less
-
Modern diagnostics is pivoting towards less invasive health monitoring in dermal interstitial fluid, rather than blood or urine. However, the skin’s outermost layer, the stratum corneum, makes accessing the fluid more difficult without invasive, needle-based technology. Simple, minimally invasive means for surpassing this hurdle are needed. Methods: To address this problem, a flexible, Band-Aid-like patch for sampling interstitial fluid was developed and tested. This patch uses simple resistive heating elements to thermally porate the stratum corneum, allowing the fluid to exude from the deeper skin tissue without applying external pressure. Fluid is then transported to an on-patch reservoir through selfdriving hydrophilic microfluidic channels. Results: Testing with living, ex-vivo human skin models demonstrated the device’s ability to rapidly collect sufficient interstitial fluid for biomarker quantification. Further, finite-element modeling showed that the patch can porate the stratum corneum without raising the skin’s temperature to paininducing levels in the nerve-laden dermis. Conclusion: Relying only on simple, commercially scalable fabrication methods, this patch outperforms the collection rate of various microneedle-based patches, painlessly sampling a human bodily fluid without entering the body. Significance: The technology holds potential as a clinical device for an array of biomedical applications, especially with the integration of on-patch testing.more » « less
-
Claesen, Jan (Ed.)ABSTRACT The human skin microbiome is a diverse ecosystem that can help prevent infections by producing biomolecules and peptides that inhibit growth and virulence of bacterial pathogens.Staphylococcus aureusis a major human pathogen responsible for diseases that range from acute skin and soft tissue infections to life-threatening septicemia. Its ability to form biofilms is a key virulence factor contributing to its success as a pathogen as well as to its increased antimicrobial resistance. Here, we investigated the ability of bacterial skin commensals to produce molecules that inhibitS. aureusbiofilm formation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified 77 human skin microbiome bacterial isolates fromStaphylococcusandBacillusgenera. Metabolites from cell-free concentrated media (CFCM) from 26 representative isolates were evaluated for their ability to inhibit biofilm formation by both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA)S. aureusstrains. CFCM, derived from most of the isolates, inhibited biofilm formation to varying extents but did not inhibit planktonic growth ofS. aureus. Size fractionation of the CFCM of threeS.epidermidisisolates indicated that they produce different bioactive molecules. Cluster analysis, based on either MALDI-TOF mass spectra or whole-genome sequencing draft genomes, did not show clear clusters associated with levels of biofilm inhibition amongS. epidermidisstrains. Finally, similar biosynthetic gene clusters were detected in allS. epidermidisstrains analyzed. These findings indicate that several bacterial constituents of the human skin microbiome display antibiofilmin vitroactivity, warranting further investigation on their potential as novel therapeutic agents. IMPORTANCEThe skin is constantly exposed to the environment and consequently to numerous pathogens. The bacterial community that colonizes healthy skin is thought to play an important role in protecting us against infections.S. aureusis a leading cause of death worldwide and is frequently involved in several types of infections, including skin and soft tissue infections. Its ability to adhere to surfaces and produce biofilms is considered an important virulence factor. Here, we analyzed the activity of different species of bacteria isolated from healthy skin onS. aureusbiofilm formation. We found that some species ofStaphylococcusandBacilluscan reduceS. aureusbiofilm formation, although a generally lower level of inhibitory activity was observed compared toS. epidermidisisolates. AmongS. epidermidisisolates, strength of activity was dependent on the strain. Our data highlight the importance of mining the skin microbiome for isolates that could help combat skin pathogens.more » « less
An official website of the United States government

