skip to main content

This content will become publicly available on February 1, 2023

Title: New jet feature in the parsec-scale jet of the blazar OJ 287 connected to the 2017 teraelectronvolt flaring activity
Context. In February 2017 the blazar OJ 287, one of the best super-massive binary-black-hole-system candidates, was detected for the first time at very high energies (VHEs; E  > 100 GeV) with the ground-based γ -ray observatory VERITAS. Aims. Very high energy γ rays are thought to be produced in the near vicinity of the central engine in active galactic nuclei. For this reason, and with the main goal of providing useful information for the characterization of the physical mechanisms connected with the observed teraelectronvolt flaring event, we investigate the parsec-scale source properties by means of high-resolution very long baseline interferometry observations. Methods. We use 86 GHz Global Millimeter-VLBI Array (GMVA) observations from 2015 to 2017 and combine them with additional multiwavelength radio observations at different frequencies from other monitoring programs. We investigate the source structure by modeling the brightness distribution with two-dimensional Gaussian components in the visibility plane. Results. In the GMVA epoch following the source VHE activity, we find a new jet feature (labeled K) at ∼0.2 mas from the core region and located in between two quasi-stationary components (labeled S1 and S2). Multiple periods of enhanced activity are detected at different radio frequencies before and during the VHE flaring more » state. Conclusions. Based on the findings of this work, we identify as a possible trigger for the VHE flaring emission during the early months of 2017 the passage of a new jet feature through a recollimation shock (represented by the model-fit component S1) in a region of the jet located at a de-projected distance of ∼10 pc from the radio core. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Astronomy & Astrophysics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this

    The flat-spectrum radio quasar Ton 599 attained its highest ever γ-ray flux state during the first week of 2017 November. Observations of the source by the Swift satellite during this period made it possible to generate a simultaneous high flux state broad-band spectral energy distribution (SED). The high flux state activity of Ton 599 is modelled in this work for the first time. We modelled one high flux state and one quiescent state of the source in order to characterize the evolution of SEDs covering the entire dynamic range of γ-ray flux observed by Fermi-LAT. An attempt was made to model the 2017 November state of the source using an external Compton (EC) model in the leptonic scenario. We reproduce the broad-band flaring state SED using a two-component leptonic emission model. We considered one component as an EC+synchrotron self-Compton (SSC) component and the other as pure SSC, lying further down in the jet. The EC+SSC component was located outside the broad-line region (BLR). It mainly reproduces the GeV emission by an EC process with a dusty torus (DT) photon field providing seed photons. We reproduce the broad-band emission from Ton 599 satisfactorily during its peculiar flaring state with a leptonic two-component model.more »Besides this, we compare the model parameters of a quiescent-state SED with the available average state model parameters in the literature.

    « less
  2. Abstract Flat-spectrum radio quasars (FSRQs) are the most luminous blazars at GeV energies but only rarely emit detectable fluxes of TeV gamma rays, typically during bright GeV flares. We explore the gamma-ray variability and spectral characteristics of three FSRQs that have been observed at GeV and TeV energies by Fermi-LAT and VERITAS, making use of almost 100 hr of VERITAS observations spread over 10 yr: 3C 279, PKS 1222+216, and Ton 599. We explain the GeV flux distributions of the sources in terms of a model derived from a stochastic differential equation describing fluctuations in the magnetic field in the accretion disk and estimate the timescales of magnetic flux accumulation and stochastic instabilities in their accretion disks. We identify distinct flares using a procedure based on Bayesian blocks and analyze their daily and subdaily variability and gamma-ray energy spectra. Using observations from VERITAS, as well as Fermi, Swift, and the Steward Observatory, we model the broadband spectral energy distributions of PKS 1222+216 and Ton 599 during very high energy (VHE)–detected flares in 2014 and 2017, respectively, strongly constraining the jet Doppler factors and gamma-ray emission region locations during these events. Finally, we place theoretical constraints on the potential production ofmore »PeV-scale neutrinos during these VHE flares.« less
  3. Abstract On July 30th, 2019 IceCube detected a high-energy astrophysical muon neutrino candidate, IC-190730A with a 67% probability of astrophysical origin. The flat spectrum radio quasar (FSRQ) PKS 1502 +106 is in the error circle of the neutrino. Motivated by this observation, we study PKS 1502+106 as a possible source of IC-190730A. PKS 1502+106 was in a quiet state in terms of UV/optical/X-ray/γ-ray flux at the time of the neutrino alert, we therefore model the expected neutrino emission from the source during its average long-term state, and investigate whether the emission of IC-190730A as a result of the quiet long-term emission of PKS 1502+106 is plausible. We analyse UV/optical and X-ray data and collect additional observations from the literature to construct the multi-wavelength spectral energy distribution of PKS 1502+106. We perform leptohadronic modelling of the multi-wavelength emission of the source and determine the most plausible emission scenarios and the maximum expected accompanying neutrino flux. A model in which the multi-wavelength emission of PKS 1502+106 originates beyond the broad-line region and inside the dust torus is most consistent with the observations. In this scenario, PKS 1502+106 can have produced up to of order one muon neutrino with energy exceeding 100 TeVmore »in the lifetime of IceCube. An appealing feature of this model is that the required proton luminosity is consistent with the average required proton luminosity if blazars power the observed ultra-high-energy-cosmic-ray flux and well below the source's Eddington luminosity. If such a model is ubiquitous among FSRQs, additional neutrinos can be expected from other bright sources with energy ≳ 10 PeV.« less
  4. Abstract We present a broadband radio study of the transient jets ejected from the black hole candidate X-ray binary MAXI J1535–571, which underwent a prolonged outburst beginning on 2017 September 2. We monitored MAXI J1535–571 with the Murchison Widefield Array (MWA) at frequencies from 119 to 186 MHz over six epochs from 2017 September 20 to 2017 October 14. The source was quasi-simultaneously observed over the frequency range 0.84–19 GHz by UTMOST (the Upgraded Molonglo Observatory Synthesis Telescope) the Australian Square Kilometre Array Pathfinder (ASKAP), the Australia Telescope Compact Array (ATCA), and the Australian Long Baseline Array (LBA). Using the LBA observations from 2017 September 23, we measured the source size to be $34\pm1$ mas. During the brightest radio flare on 2017 September 21, the source was detected down to 119 MHz by the MWA, and the radio spectrum indicates a turnover between 250 and 500 MHz, which is most likely due to synchrotron self-absorption (SSA). By fitting the radio spectrum with a SSA model and using the LBA size measurement, we determined various physical parameters of the jet knot (identified in ATCA data), including the jet opening angle ( $\phi_{\rm op} = 4.5\pm1.2^{\circ}$ ) and the magnetic field strengthmore »( $B_{\rm s} = 104^{+80}_{-78}$ mG). Our fitted magnetic field strength agrees reasonably well with that inferred from the standard equipartition approach, suggesting the jet knot to be close to equipartition. Our study highlights the capabilities of the Australian suite of radio telescopes to jointly probe radio jets in black hole X-ray binaries via simultaneous observations over a broad frequency range, and with differing angular resolutions. This suite allows us to determine the physical properties of X-ray binary jets. Finally, our study emphasises the potential contributions that can be made by the low-frequency part of the Square Kilometre Array (SKA-Low) in the study of black hole X-ray binaries.« less
  5. null (Ed.)
    Abstract Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii ( r g  ≡  G M / c 2 ) scales in nearby sources 1 . Centaurus A is the closest radio-loud source to Earth 2 . It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations 3 , we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500  r g scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet coremore »at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow 4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses 5,6 .« less