skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Methodology to determine the coupling of continental clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data
Abstract. The states of coupling between clouds andsurface or boundary layer have been investigated much more extensively formarine stratocumulus clouds than for continental low clouds, partly due tomore complex thermodynamic structures over land. A manifestation is a lackof robust remote sensing methods to identify coupled and decoupled cloudsover land. Following the idea for determining cloud coupling over the ocean,we have generalized the concept of coupling and decoupling to low cloudsover land, based on potential temperature profiles. Furthermore, by usingample measurements from lidar and a suite of surface meteorologicalinstruments at the U.S. Department of Energy's Atmospheric RadiationMeasurement Program's Southern Great Plains site from 1998 to 2019, we havedeveloped a method to simultaneously retrieve the planetary boundary layer(PBL) height (PBLH) and coupled states under cloudy conditions during thedaytime. The new lidar-based method relies on the PBLH, the liftedcondensation level, and the cloud base to diagnose the cloud coupling. Thecoupled states derived from this method are highly consistent with thosederived from radiosondes. Retrieving the PBLH under cloudy conditions, whichhas been a persistent problem in lidar remote sensing, is resolved in thisstudy. Our method can lead to high-quality retrievals of the PBLH undercloudy conditions and the determination of cloud coupling states. With thenew method, we find that coupled clouds are sensitive to changes in the PBLwith a strong diurnal cycle, whereas decoupled clouds and the PBL are weaklyrelated. Since coupled and decoupled clouds have distinct features, our newmethod offers an advanced tool to separately investigate them in climatesystems.  more » « less
Award ID(s):
2126098 1837811
PAR ID:
10346763
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
22
Issue:
2
ISSN:
1680-7324
Page Range / eLocation ID:
1453 to 1466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Due to surface heating, the morning boundary layer transits from stable to neutral or convective conditions, exerting critical influences on low tropospheric thermodynamics. Low clouds closely interact with the boundary layer development, yet their interactions bear considerable uncertainties. Our study reveals that cloud‐surface coupling alters the morning transition from stable to unstable boundary layer and thus notably affects the diurnal variation of the boundary layer. Specifically, due to the reduction in surface fluxes, decoupled clouds can delay the process of eroding nocturnal inversion by 0.8‐hr and even prevent the transition of the boundary layer from happening for 12% of decoupled cases, keeping the boundary layer in a stable state during the noontime. On the other hand, when clouds are coupled with the surface, cloud‐top radiative cooling can directly cool the upper boundary layer to facilitate sub‐cloud convection, leading to an unstable boundary layer in the earlier morning.

     
    more » « less
  2. Abstract

    To enhance our understanding of cloud simulations over land, this study provides the first assessment of coupling between cloud and land surface in the Large‐Eddy Simulation (LES) Atmospheric Radiation Measurement Symbiotic Simulation and Observation (LASSO) activity for the shallow convection scenario. The analysis of observation data reveals a diurnal cycle of cloud‐land coupling, which co‐varies with surface fluxes. However, coupled (or decoupled) cumulus clouds are inadequately simulated, manifesting as a too‐high (or low) occurrence frequency during the afternoon. This discrepancy is mirrored by the overestimated cloud liquid water path and cloud‐top height. These overestimations are linked to the overpredicted boundary‐layer development and the easier trigger of shallow convection misrepresented in LES runs. Our study underscores the need to improve the representations of boundary‐layer processes and cloud‐land interactions within LES to better simulate shallow clouds in the future.

     
    more » « less
  3. PBL plays a critical role in the atmosphere by transferring heat, moisture, and momentum. The warm PBL has a distinct diurnal cycle including daytime convective mixing layer (ML) and nighttime residual layer developments. Thus, for PBL characterization and process study, simultaneous determinations of PBL height (PBLH) and ML height (MLH) are necessary. Here, new approaches are developed to provide reliable PBLH and MLH to characterize warm PBL evolution. The approaches use Raman lidar (RL) water vapor mixing ratio (WVMR) and Doppler lidar (DL) vertical velocity measurements at the Southern Great Plains (SGP) atmospheric observatory, which was established by the Atmospheric Radiation Measurement (ARM) user facility. Compared with widely used lidar aerosol measurements for PBLH, WVMR is a better trace for PBL vertical mixing. For PBLH, the approach classifies PBL water vapor structures into a few general patterns, then uses a slope method and dynamic threshold method to determine PBLH. For MLH, wavelet analysis is used to re-construct 2-D variance from DL vertical wind velocity measurements according to the turbulence eddy size to minimize the impacts of gravity wave and eddy size on variance calculations; then, a dynamic threshold method is used to determine MLH. Remotely-sensed PBLHs and MLHs are compared with radiosonde measurements based on the Richardson number method. Good agreements between them confirm that the proposed new algorithms are reliable for PBLH and MLH characterization. The algorithms are applied to warm seasons’ RL and ML measurements at the SGP site for five years to study warm season PBL structure and processes. The weekly composited diurnal evolutions of PBLHs and MLHs in warm climate were provided to illustrate diurnal and seasonal PBL evolutions. This reliable PBLH and MLH dataset will be valuable for PBL process study, model evolution, and PBL parameterization improvement.

     
    more » « less
  4. Low-level clouds in the Arctic affect the surface energy budget and vertical transport of heat and moisture. The limited availability of cloud-droplet-forming aerosol particles strongly impacts cloud properties and lifetime. Vertical particle distributions are required to study aerosol–cloud interaction over sea ice comprehensively. This article presents vertically resolved measurements of aerosol particle number concentrations and sizes using tethered balloons. The data were collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition in the summer of 2020. Thirty-four profiles of aerosol particle number concentration were observed in 2 particle size ranges: 12–150 nm (N12−150) and above 150 nm (N>150). Concurrent balloon-borne meteorological measurements provided context for the continuous profiles through the cloudy atmospheric boundary layer. Radiosoundings, cloud remote sensing data, and 5-day back trajectories supplemented the analysis. The majority of aerosol profiles showed more particles above the lowest temperature inversion, on average, double the number concentration compared to below. Increased N12−150 up to 3,000 cm−3 were observed in the free troposphere above low-level clouds related to secondary particle formation. Long-range transport of pollution increased N>150 to 310 cm−3 in a warm, moist air mass. Droplet activation inside clouds caused reductions of N>150 by up to 100%, while the decrease in N12−150 was less than 50%. When low-level clouds were thermodynamically coupled with the surface, profiles showed 5 times higher values of N12−150 in the free troposphere than below the cloud-capping temperature inversion. Enhanced N12−150 and N>150 interacting with clouds were advected above the lowest inversion from beyond the sea ice edge when clouds were decoupled from the surface. Vertically discontinuous aerosol profiles below decoupled clouds suggest that particles emitted at the surface are not transported to clouds in these conditions. It is concluded that the cloud-surface coupling state and free tropospheric particle abundance are crucial when assessing the aerosol budget for Arctic low-level clouds over sea ice.

     
    more » « less
  5. Abstract. During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign, held in the summer of 2019 in northern Wisconsin, USA, active and passive ground-based remote sensing instruments were deployed to understand the response of the planetary boundary layer to heterogeneous land surface forcing. These instruments include radar wind profilers, microwave radiometers, atmospheric emitted radiance interferometers, ceilometers, high spectral resolution lidars, Doppler lidars, and collaborative lower-atmospheric mobile profiling systems that combine several of these instruments. In this study, these ground-based remote sensing instruments are used to estimate the height of the daytime planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the field campaign. The impact of clouds (in particular boundary layer clouds) on boundary layer depth estimations is also investigated. We found that while all instruments are overall able to provide reasonable boundary layer depth estimates, each of them shows strengths and weaknesses under certain conditions. For example, radar wind profilers perform well during cloud-free conditions, and microwave radiometers and atmospheric emitted radiance interferometers have a very good agreement during all conditions but are limited by the smoothness of the retrieved thermodynamic profiles. The estimates from ceilometers and high spectral resolution lidars can be hindered by the presence of elevated aerosol layers or clouds, and the multi-instrument retrieval from the collaborative lower atmospheric mobile profiling systems can be constricted to a limited height range in low-aerosol conditions. 
    more » « less