skip to main content

This content will become publicly available on August 4, 2023

Title: Social capital II: determinants of economic connectedness
Abstract Low levels of social interaction across class lines have generated widespread concern 1–4 and are associated with worse outcomes, such as lower rates of upward income mobility 4–7 . Here we analyse the determinants of cross-class interaction using data from Facebook, building on the analysis in our companion paper 7 . We show that about half of the social disconnection across socioeconomic lines—measured as the difference in the share of high-socioeconomic status (SES) friends between people with low and high SES—is explained by differences in exposure to people with high SES in groups such as schools and religious organizations. The other half is explained by friending bias—the tendency for people with low SES to befriend people with high SES at lower rates even conditional on exposure. Friending bias is shaped by the structure of the groups in which people interact. For example, friending bias is higher in larger and more diverse groups and lower in religious organizations than in schools and workplaces. Distinguishing exposure from friending bias is helpful for identifying interventions to increase cross-SES friendships (economic connectedness). Using fluctuations in the share of students with high SES across high school cohorts, we show that increases in high-SES exposure lead low-SES people more » to form more friendships with high-SES people in schools that exhibit low levels of friending bias. Thus, socioeconomic integration can increase economic connectedness in communities in which friending bias is low. By contrast, when friending bias is high, increasing cross-SES interactions among existing members may be necessary to increase economic connectedness. To support such efforts, we release privacy-protected statistics on economic connectedness, exposure and friending bias for each ZIP (postal) code, high school and college in the United States at https://www.socialcapital.org . « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Award ID(s):
2018554
Publication Date:
NSF-PAR ID:
10346821
Journal Name:
Nature
Volume:
608
Issue:
7921
Page Range or eLocation-ID:
122 to 134
ISSN:
0028-0836
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Social capital—the strength of an individual’s social network and community—has been identified as a potential determinant of outcomes ranging from education to health 1–8 . However, efforts to understand what types of social capital matter for these outcomes have been hindered by a lack of social network data. Here, in the first of a pair of papers 9 , we use data on 21 billion friendships from Facebook to study social capital. We measure and analyse three types of social capital by ZIP (postal) code in the United States: (1) connectedness between different types of people, such as those with low versus high socioeconomic status (SES); (2) social cohesion, such as the extent of cliques in friendship networks; and (3) civic engagement, such as rates of volunteering. These measures vary substantially across areas, but are not highly correlated with each other. We demonstrate the importance of distinguishing these forms of social capital by analysing their associations with economic mobility across areas. The share of high-SES friends among individuals with low SES—which we term economic connectedness—is among the strongest predictors of upward income mobility identified to date 10,11 . Other social capital measures are not strongly associated with economic mobility. Ifmore »children with low-SES parents were to grow up in counties with economic connectedness comparable to that of the average child with high-SES parents, their incomes in adulthood would increase by 20% on average. Differences in economic connectedness can explain well-known relationships between upward income mobility and racial segregation, poverty rates, and inequality 12–14 . To support further research and policy interventions, we publicly release privacy-protected statistics on social capital by ZIP code at https://www.socialcapital.org .« less
  2. The impact of technology on workforce development and socio-economic prosperity has made K-12 computing engineering and STEM in general a national educational priority. However, the integration of computing remains obstructed by resources and lack of professional development to support students’ learning. Further challenging is that students’ STEM attitudes and interest do not matriculate with them into higher education. This issue is especially critical for traditionally underrepresented and underserved populations including females, racial/ethnic minority groups, and students of low-socioeconomic status (SES). To help mitigate these challenges, we developed an unplugged (computer-less) computing engineering and robotics lesson composed of three introductory computing concepts, sequencing, debugging, and sensing/ decision- making, using a small robot-arm and tangible programming blocks. Through students’ sequencing of operations, debugging, and executing of complex robotic behavior, we seek to determine if students’ interest or attitudes change toward engineering. Nine one-hour introductory pilot lessons with 148 students, grades 6-10, at two public middle schools, and one summer camp were conducted. For 43% of students, this was their first time participating in an engineering lesson. We measured students’ engineering interest and attitudes through a 15 question pre- and post-lesson survey and calculated aggregate factor scores for interest and attitudes. We foundmore »low-SES students’ a priori interests and attitudes tend to be lower and more varied than those of their high-SES peers. These preliminary results suggest that the integration of introductory computing and robotics lessons in low-SES classrooms may help students reach similar levels of engineering interest and attitudes as their high-SES peers.« less
  3. Background & Program Description: The link between student engagement and retention is well-established in the education literature. As a result, many colleges have developed first-year experience programs to engage students in early technical work and to promote community-building. However, many of these student success programs require participation in extracurricular activities, which require time outside of class. Yet time for extracurricular activities is a luxury that many students of low socioeconomic status (SES) cannot afford due to family or work obligations. The Scholarships in STEM (S-STEM) program, funded by the National Science Foundation, provides crucial financial support to high-achieving low-SES STEM students. The S-STEM scholarships give students the option to work less or not at all. The intended result is that students regain the time afforded to their more privileged peers, thereby also giving them the opportunity to more effectively engage with their institution, studies, and peers. The Endeavour Program is a two-year program that incorporates the S-STEM financial support into a multi-faceted and multi-college program in STEM designed to increase the level of student engagement in school. The scholars, who are recruited from three colleges, take classes together, work on hands-on team projects, attend professional and personal development events, participatemore »in outreach events, and conduct research with faculty mentors. Over the course of the two-year program, four dimensions of student engagement (academic, behavioral, cognitive, and affective) are tracked to determine the appropriateness of using these engagement levels as predictors of success. Results: Two cohorts of 20 students were recruited in the fall of 2017 and in the fall of 2018. The first cohort completed the two-year program in the spring of 2020, and the second cohort began the second year of the program in the fall of 2020. No third cohort was recruited in 2020 due the Covid19 pandemic. The third and fourth cohorts will now enter the program in the fall of 2021 and the fall of 2022 respectively. Overall, the results of the Endeavour Program have been positive. The final retention outcome for the first cohort (the only cohort to complete the program thus far) was 85% (17/20). Retention for the second cohort is currently at 100% (20/20). Initial results show that the S-STEM scholars are performing academically as well as their peers who do not share the same risk factors. In addition, the number of completed hours is also on par with their peers. However, the most significant gains were observed in the qualitative data. Students expressed fears and anxieties about the high school to college transition and reported that the guidance provided and the community formed through the Endeavour Program alleviated many of those negative emotions. The full paper shows student engagement data obtained over time for the first and second cohorts as well as lessons learned and directions for future work. Also, examples of advising charts created in an engagement data dashboard show how the quantitative engagement data has been compiled and organized to show early warning signs for current and future cohorts.« less
  4. Investigating socioeconomic status (SES) biases, Nepalese children and adolescents (N = 605, 52% girls, Mage = 13.21, SDage = 1.74) attending schools that varied by SES composition were asked to anticipate whether a peer would include a high or low SES character as a math partner. Novel findings were that students attending mixed SES schools were more likely to expect inclusion of a low SES character than were students attending high SES schools. With age, high SES participants attending mixed SES schools increasingly expected the inclusion of the low SES character. Moreover, teachers' democratic beliefs in high SES schools predicted inclusive expectations. Teacher beliefs and school diversity play a significant role for fostering students' inclusivity in educational contexts.
  5. Community colleges play a vital role in preparing the highly skilled technical workforce needed to support the biotechnology industry. Community colleges offer students hands-on practical experience, certificates, and technical degrees. Students include high-school graduates, individuals changing careers, college graduates, and even PhD holders. As these colleges support the many facets of the biotechnology industry, their laboratories are equipped to teach modern techniques, including DNA sequencing, mass spectrometry, microscopy, chromatography, immunoassays, and bioinformatics. Many programs are also developing education skill standards and curriculum to support the latest biotechnology manufacturing that includes CRISPR-based gene therapies, CAR-T, immuno-therapeutics, and patient derived tissues. Some programs have established contract service organizations and business incubators to catalyze regional economic development and provide internships for students entering the workforce. These college-run organizations share many similarities with ABRF core facilities. Over the last 20+ years, community college biotechnology programs have come together to share experiences and learning through the Bio-Link network. Bio-Link was funded by the NSF-ATE (National Science Foundation Advanced Technological Education) program until the fall of 2018. In the fall of 2019, InnovATEBIO, a new national center for biotechnology education, was initiated through a five-year NSF-ATE award. InnovATEBIO will build on the Bio-Link foundation to furthermore »advance connections between high schools, community colleges, and the biotechnology industry to increase the number of highly trained biotechnology technicians in the United States. InnovATEBIO will support activities designed to increase authentic research and work-based experiences and seeks to develop collaborations with ABRF members supporting course development and partner on projects that could be funded by NSF or others.« less