Abstract Low levels of social interaction across class lines have generated widespread concern 1–4 and are associated with worse outcomes, such as lower rates of upward income mobility 4–7 . Here we analyse the determinants of cross-class interaction using data from Facebook, building on the analysis in our companion paper 7 . We show that about half of the social disconnection across socioeconomic lines—measured as the difference in the share of high-socioeconomic status (SES) friends between people with low and high SES—is explained by differences in exposure to people with high SES in groups such as schools and religious organizations. The other half is explained by friending bias—the tendency for people with low SES to befriend people with high SES at lower rates even conditional on exposure. Friending bias is shaped by the structure of the groups in which people interact. For example, friending bias is higher in larger and more diverse groups and lower in religious organizations than in schools and workplaces. Distinguishing exposure from friending bias is helpful for identifying interventions to increase cross-SES friendships (economic connectedness). Using fluctuations in the share of students with high SES across high school cohorts, we show that increases in high-SES exposure lead low-SES people to form more friendships with high-SES people in schools that exhibit low levels of friending bias. Thus, socioeconomic integration can increase economic connectedness in communities in which friending bias is low. By contrast, when friending bias is high, increasing cross-SES interactions among existing members may be necessary to increase economic connectedness. To support such efforts, we release privacy-protected statistics on economic connectedness, exposure and friending bias for each ZIP (postal) code, high school and college in the United States at https://www.socialcapital.org .
more »
« less
Social capital I: measurement and associations with economic mobility
Abstract Social capital—the strength of an individual’s social network and community—has been identified as a potential determinant of outcomes ranging from education to health 1–8 . However, efforts to understand what types of social capital matter for these outcomes have been hindered by a lack of social network data. Here, in the first of a pair of papers 9 , we use data on 21 billion friendships from Facebook to study social capital. We measure and analyse three types of social capital by ZIP (postal) code in the United States: (1) connectedness between different types of people, such as those with low versus high socioeconomic status (SES); (2) social cohesion, such as the extent of cliques in friendship networks; and (3) civic engagement, such as rates of volunteering. These measures vary substantially across areas, but are not highly correlated with each other. We demonstrate the importance of distinguishing these forms of social capital by analysing their associations with economic mobility across areas. The share of high-SES friends among individuals with low SES—which we term economic connectedness—is among the strongest predictors of upward income mobility identified to date 10,11 . Other social capital measures are not strongly associated with economic mobility. If children with low-SES parents were to grow up in counties with economic connectedness comparable to that of the average child with high-SES parents, their incomes in adulthood would increase by 20% on average. Differences in economic connectedness can explain well-known relationships between upward income mobility and racial segregation, poverty rates, and inequality 12–14 . To support further research and policy interventions, we publicly release privacy-protected statistics on social capital by ZIP code at https://www.socialcapital.org .
more »
« less
- Award ID(s):
- 2018554
- PAR ID:
- 10346820
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature
- Volume:
- 608
- Issue:
- 7921
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 108 to 121
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Where an individual grows up has large implications for their long-term economic outcomes, including earnings and intergenerational mobility. Even within the United States, the “causal effect of place” varies greatly and cannot be fully explained by socioeconomic conditions. Across different nations, variation in growth and mobility have been linked to more individualistic cultures. We assess how variation of historically driven individualism within the United States affects mobility. Areas in the United States that were isolated on the frontier for longer periods of time during the 19th century have a stronger culture of “rugged individualism” [S. Bazzi, M. Fiszbein, M. Gebresilasse, Econometrica 88, 2329–2368 (2020)]. We combine county-level measures of frontier experience with modern measures of the causal effect of place on mobility—the predicted percentage change in an individual’s earnings at age 26 y associated with “growing up” in a particular county [R. Chetty, N. Hendren, Q. J. Econ. 133, 1163–1228 (2018)]. Using commuting zone fixed effects and a suite of county-level controls to absorb regional variation in frontier experience and modern economic conditions, we find an additional decade of frontier experience results in 25% greater modern-day income mobility for children of parents in the 25th percentile of income and 14% for those born to parents in the 75th percentile. We use mediation analysis to present suggestive evidence that informal manifestations of “rugged individualism”—those embodied by the individuals themselves—are more strongly associated with upward mobility than formal policy or selective migration.more » « less
-
Abstract BackgroundNew York City (NYC) has been one of the hotspots of the COVID‐19 pandemic in the United States. By the end of April 2020, close to 165 000 cases and 13 000 deaths were reported in the city with considerable variability across the city's ZIP codes. ObjectivesIn this study, we examine: (a) the extent to which the variability in ZIP code‐level case positivity can be explained by aggregate markers of socioeconomic status (SES) and daily change in mobility; and (b) the extent to which daily change in mobility independently predicts case positivity. MethodsCOVID‐19 case positivity by ZIP code was modeled using multivariable linear regression with generalized estimating equations to account for within‐ZIP clustering. Daily case positivity was obtained from NYC Department of Health and Mental Hygiene and measures of SES were based on data from the American Community Survey. Changes in human mobility were estimated using anonymized aggregated mobile phone location systems. ResultsOur analysis indicates that the socioeconomic markers considered together explained 56% of the variability in case positivity through April 1 and their explanatory power decreased to 18% by April 30. Changes in mobility during this time period are not likely to be acting as a mediator of the relationship between ZIP‐level SES and case positivity. During the middle of April, increases in mobility were independently associated with decreased case positivity. ConclusionsTogether, these findings present evidence that heterogeneity in COVID‐19 case positivity during NYC’s spring outbreak was largely driven by residents’ SES.more » « less
-
While economic inequality continues to rise within countries, efforts to address it have been largely ineffective, particularly those involving behavioral approaches. It is often implied but not tested that choice patterns among low-income individuals may be a factor impeding behavioral interventions aimed at improving upward economic mobility. To test this, we assessed rates of ten cognitive biases across nearly 5000 participants from 27 countries. Our analyses were primarily focused on 1458 individuals that were either low-income adults or individuals who grew up in disadvantaged households but had above-average financial well-being as adults, known as positive deviants. Using discrete and complex models, we find evidence of no differences within or between groups or countries. We therefore conclude that choices impeded by cognitive biases alone cannot explain why some individuals do not experience upward economic mobility. Policies must combine both behavioral and structural interventions to improve financial well-being across populations.more » « less
-
Abstract The COVID-19 pandemic brought unprecedented changes to various aspects of daily life, profoundly affecting human mobility. These changes in mobility patterns were not uniform, as numerous factors, including public health measures, socioeconomic status, and urban infrastructure, influenced them. This study examines human mobility changes during COVID-19 in San Diego County and New York City, employing Latent Profile Analysis (LPA) and various network measures to analyze connectivity and socioeconomic status (SES) within these regions. While many COVID-19 and mobility studies have revealed overall reductions in mobility or changes in mobility patterns, they often fail to specify ’where’ these changes occur and lack a detailed understanding of the relationship between SES and mobility changes. This creates a significant research gap in understanding the spatial and socioeconomic dimensions of mobility changes during the pandemic. This study aims to address this gap by providing a comprehensive analysis of how mobility patterns varied across different socioeconomic groups during the pandemic. By comparing mobility patterns before and during the pandemic, we aim to shed light on how this unprecedented event impacted different communities. Our research contributes to the literature by employing network science to examine COVID-19’s impact on human mobility, integrating SES variables into the analysis of mobility networks. This approach provides a detailed understanding of how social and economic factors influence movement patterns and urban connectivity, highlighting disparities in mobility and access across different socioeconomic groups. The results identify areas functioning as hubs or bridges and illustrate how these roles changed during COVID-19, revealing existing societal inequalities. Specifically, we observed that urban parks and rural areas with national parks became significant mobility hubs during the pandemic, while affluent areas with high educational attainment saw a decline in centrality measures, indicating a shift in urban mobility dynamics and exacerbating pre-existing socioeconomic disparities.more » « less
An official website of the United States government

