skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eco-hydrological responses to recent droughts in tropical South America
Abstract This study assesses the ecohydrological effects of recent meteorological droughts in tropical South America based on multiple sources of data, and investigates the possible mechanisms underlying the drought response and recovery of different ecohydrological systems. Soil drought response and recovery lag behind the meteorological drought, with delays longer in the dry region (Nordeste) than in the wet region (Amazonia), and longer in deep soil than in shallow soil. Evapotranspiration (ET) and vegetation in Nordeste are limited by water under normal conditions and decrease promptly in response to the onset of shallow soil drought. In most of the Amazon where water is normally abundant, ET and vegetation indices follow an increase-then-decrease pattern, increase at the drought onset due to increased sunshine and decrease when the drought is severe enough to cause a shift from an energy-limited regime to a water-limited regime. After the demise of meteorological droughts, ET and vegetation rapidly recover in Nordeste with the replenishment of shallow soil moisture (SM), but take longer to recover in southern Amazon due to their dependence on deep SM storage. Following severe droughts, the negative anomalies of ET and vegetation indices in southern Amazon tend to persist well beyond the end of soil drought, indicating drought-induced forest mortality that is slow to recover from. Findings from this study may have implications on the possibility of a future forest dieback as drought is projected to become more frequent and more severe in a warmer climate.  more » « less
Award ID(s):
1659953
PAR ID:
10346849
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
2
ISSN:
1748-9326
Page Range / eLocation ID:
024037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In summer 2021, 90% of the western United States (WUS) experienced drought, with over half of the region facing extreme or exceptional conditions, leading to water scarcity, crop loss, ecological degradation, and significant socio‐economic consequences. Beyond the established influence of oceanic forcing and internal atmospheric variability, this study highlights the importance of land‐surface conditions in the development of the 2020–2021 WUS drought, using observational data analysis and novel numerical simulations. Our results demonstrate that the soil moisture state preceding a meteorological drought, due to its intrinsic memory, is a critical factor in the development of soil droughts. Specifically, wet soil conditions can delay the transition from meteorological to soil droughts by several months or even nullify the effects of La Niña‐driven meteorological droughts, while drier conditions can exacerbate these impacts, leading to more severe soil droughts. For the same reason, soil droughts can persist well beyond the end of meteorological droughts. Our numerical experiments suggest a relatively weak soil moisture‐precipitation coupling during this drought period, corroborating the primary contributions of the ocean and atmosphere to this meteorological drought. Additionally, drought‐induced vegetation losses can mitigate soil droughts by reducing evapotranspiration and slowing the depletion of soil moisture. This study highlights the importance of soil moisture and vegetation conditions in seasonal‐to‐interannual drought predictions. Findings from this study have implications for regions like the WUS, which are experiencing anthropogenically‐driven soil aridification and vegetation greening, suggesting that future soil droughts in these areas may develop more rapidly, become more severe, and persist longer. 
    more » « less
  2. Abstract Evapotranspiration (ET) is co‐regulated by subsurface water availability, atmospheric demand for water, and radiation. Spatial differences in the limiting factors on ET that emerge along the soil‐plant‐atmosphere continuum result in distinct ecohydrological regimes with differing sensitivities to atmospheric and subsurface drivers. However, different components of the soil‐plant‐atmosphere continuum are not equally well understood. Deep subsurface water access is particularly difficult to measure and model, but can sustain ET under drought conditions when shallow soil moisture appears to be acutely limiting. Here, we exploited this principle to identify ecosystems that rely on deep subsurface water availability. We first used a plant hydraulic model to determine the expected ET behavior for plants with deep water access. We then examined 19 flux towers and found that responsiveness of ET to atmospheric conditions during dry periods was indicative of some ecosystems with deep water access. We used the divergent sensitivities of ET to vapor pressure deficit, radiation, and shallow soil moisture to identify distinct ecohydrological regimes in gridded data covering the continental U.S. We diagnosed deep water usage in ecosystems where ET remained sensitive to atmospheric conditions despite being insensitive to shallow soil moisture variability. Further, we found that drought stress, plant hydraulic traits, and ecosystem biophysical variables mediated the sensitivity of ET to aboveground and belowground conditions. 
    more » « less
  3. Summary Tropical forest function is of global significance to climate change responses, and critically determined by water availability patterns. Groundwater is tightly related to soil water through the water table depth (WT), but historically neglected in ecological studies. Shallow WT forests (WT < 5 m) are underrepresented in forest research networks and absent in eddy flux measurements, although they representc. 50% of the Amazon and are expected to respond differently to global‐change‐related droughts. We review WT patterns and consequences for plants, emerging results, and advance a conceptual model integrating environment and trait distributions to predict climate change effects. Shallow WT forests have a distinct species composition, with more resource‐acquisitive and hydrologically vulnerable trees, shorter canopies and lower biomass than deep WT forests. During ‘normal’ climatic years, shallow WT forests have higher mortality and lower productivity than deep WT forests, but during moderate droughts mortality is buffered and productivity increases. However, during severe drought, shallow WT forests may be more sensitive due to shallow roots and drought‐intolerant traits. Our evidence supports the hypothesis of neglected shallow WT forests being resilient to moderate drought, challenging the prevailing view of widespread negative effects of climate change on Amazonian forests that ignores WT gradients, but predicts they could collapse under very strong droughts. 
    more » « less
  4. null (Ed.)
    Abstract. Over the past decade, Brazil has experienced severe droughts across its territory, with important implications for soil moisture dynamics. Soil moisture variability has a direct impact on agriculture, water security and ecosystem services. Nevertheless, there is currently little information on how soil moisture across different biomes responds to drought. In this study, we used satellite soil moisture data from the European Space Agency, from 2009 to 2015, to analyze differences in soil moisture responses to drought for each biome of Brazil: Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa and Pantanal. We found an overall soil moisture decline of −0.5 % yr−1 (p<0.01) at the national level. At the biome level, Caatinga presented the most severe soil moisture decline (−4.4 % yr−1), whereas the Atlantic Forest and Cerrado biomes showed no significant trend. The Amazon biome showed no trend but had a sharp reduction of soil moisture from 2013 to 2015. In contrast, the Pampa and Pantanal biomes presented a positive trend (1.6 % yr−1 and 4.3 % yr−1, respectively). These trends are consistent with vegetation productivity trends across each biome. This information provides insights into drought risk reduction and soil conservation activities to minimize the impact of drought in the most vulnerable biomes. Furthermore, improving our understanding of soil moisture trends during periods of drought is crucial to enhance the national drought early warning system and develop customized strategies for adaptation to climate change in each biome. 
    more » « less
  5. Droughts can exert a strong influence on the regional energy balance of the Amazon and Cerrado, as can the replacement of native vegetation by croplands. What remains unclear is how these two forcing factors interact and whether land cover changes fundamentally alter the sensitivity of the energy balance components to drought events. To fill this gap, we used remote sensing data to evaluate the impacts of drought on evapotranspiration (ET), land surface temperature (LST), and albedo on cultivated areas, savannas, and forests. Our results (for seasonal drought) indicate that increases in monthly dryness across Mato Grosso state (southern Amazonia and northern Cerrado) drive greater increases in LST and albedo in croplands than in forests. Furthermore, during the 2007 and 2010 droughts, croplands became hotter (0.1–0.8 °C) than savannas (0.3–0.6 °C) and forests (0.2–0.3 °C). However, forest ET was consistently higher than ET in all other land uses. This finding likely indicates that forests can access deeper soil water during droughts. Overall, our findings suggest that forest remnants can play a fundamental role in the mitigation of the negative impacts of extreme drought events, contributing to a higher ET and lower LST. 
    more » « less