skip to main content


Title: Platinum Deposited Nitrogen-Doped Vertically Aligned Carbon Nanofibers as Methanol Tolerant Catalyst for Oxygen Reduction Reaction with Improved Durability
Nitrogen doping in carbon materials can modify the employed carbon material’s electronic and structural properties, which helps in creating a stronger metal-support interaction. In this study, the role of nitrogen doping in improving the durability of Pt catalysts supported on a three-dimensional vertically aligned carbon nanofiber (VACNF) array towards oxygen reduction reaction (ORR) was explored. The nitrogen moieties present in the N-VACNF enhanced the metal-support interaction and contributed to a reduction in the Pt particle size from 3.1 nm to 2.3 nm. The Pt/N-VACNF catalyst showed better durability when compared to Pt/VACNF and Pt/C catalysts with similar Pt loading. DFT calculations validated the increase in the durability of the Pt NPs with an increase in pyridinic N and corroborated the molecular ORR pathway for Pt/N-VACNF. Moreover, the Pt/N-VACNF catalyst was found to have excellent tolerance towards methanol crossover.  more » « less
Award ID(s):
1703263
PAR ID:
10346856
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Applied Nano
Volume:
2
Issue:
4
ISSN:
2673-3501
Page Range / eLocation ID:
303 to 318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nitrogen‐doped graphitic carbon materials have been widely used as a catalyst support in the methanol oxidation reaction (MOR). In this study, we report the role of three‐dimensionally architectured in‐situ N‐doped vertically aligned carbon nanofibers (VACNF) as a catalyst support for MOR in acidic and alkaline media. The abundant graphitic edge sites at the sidewall of N‐doped VACNF strongly anchor the deposited platinum group metal (PGM) catalysts and induce a partial electron transfer between the PGM catalysts and support. Density Functional Theory (DFT) calculations reveal that the strong metal‐support interaction substantially increases the adsorption energy of OH, particularly near the N‐doping sites, which helps to compete and remove the adsorbed intermediate species generated during MOR. The PGM catalysts on N‐doped VACNF support exhibits CO stripping at lower potentials comparing to the commercial Vulcan carbon support and presents an enhanced electrocatalytic performance and better durability for MOR.

     
    more » « less
  2. null (Ed.)
    Clusters of nitrogen- and carbon-coordinated transition metals dispersed in a carbon matrix (e. g., Fe−N−C) have emerged as an inexpensive class of electrocatalysts for the oxygen reduction reaction (ORR). Here, it was shown that optimizing the interaction between the nitrogen-coordinated transition metal clusters embedded in a more stable and corrosion-resistant carbide matrix yielded an ORR electrocatalyst with enhanced activity and stability compared to Fe−N−C catalysts. Utilizing first-principles calculations, an electrostatics-based descriptor of catalytic activity was identified, and nitrogen-coordinated iron (FeN4) clusters embedded in a TiC matrix were predicted to be an efficient platinum-group metal (PGM)-free ORR electrocatalyst. Guided by theory, selected catalyst formulations were synthesized, and it was demonstrated that the experimentally observed trends in activity fell exactly in line with the descriptor-derived theoretical predictions. The Fe−N−TiC catalyst exhibited enhanced activity (20 %) and durability (3.5-fold improvement) compared to a traditional Fe−N−C catalyst. It was posited that the electrostatics-based descriptor provides a powerful platform for the design of active and stable PGM-free electrocatalysts and heterogenous single-atom catalysts for other electrochemical reactions. 
    more » « less
  3. Abstract

    Clusters of nitrogen‐ and carbon‐coordinated transition metals dispersed in a carbon matrix (e. g., Fe−N−C) have emerged as an inexpensive class of electrocatalysts for the oxygen reduction reaction (ORR). Here, it was shown that optimizing the interaction between the nitrogen‐coordinated transition metal clusters embedded in a more stable and corrosion‐resistant carbide matrix yielded an ORR electrocatalyst with enhanced activity and stability compared to Fe−N−C catalysts. Utilizing first‐principles calculations, an electrostatics‐based descriptor of catalytic activity was identified, and nitrogen‐coordinated iron (FeN4) clusters embedded in a TiC matrix were predicted to be an efficient platinum‐group metal (PGM)‐free ORR electrocatalyst. Guided by theory, selected catalyst formulations were synthesized, and it was demonstrated that the experimentally observed trends in activity fell exactly in line with the descriptor‐derived theoretical predictions. The Fe−N−TiC catalyst exhibited enhanced activity (20 %) and durability (3.5‐fold improvement) compared to a traditional Fe−N−C catalyst. It was posited that the electrostatics‐based descriptor provides a powerful platform for the design of active and stable PGM‐free electrocatalysts and heterogenous single‐atom catalysts for other electrochemical reactions.

     
    more » « less
  4. null (Ed.)
    One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V ( vs.  RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt 3 M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm −2 . The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions. 
    more » « less
  5. Developing low platinum-group-metal (PGM) catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs) for heavy- duty vehicles (HDVs) remains a great challenge due to the highly demanded power density and long-term durability. This work explores the possible synergistic effect between single Mn site-rich carbon (MnSA-NC) and Pt nanoparticles, aiming to improve intrinsic activity and stability of PGM catalysts. Density functional theory (DFT) calculations predicted a strong coupling effect between Pt and MnN4 sites in the carbon support, strengthening their interactions to immobilize Pt nanoparticles during the ORR. The adjacent MnN4 sites weaken oxygen adsorption at Pt to enhance intrinsic activity. Well-dispersed Pt (2.1 nm) and ordered L12-Pt3Co nanoparticles (3.3 nm) were retained on the MnSA-NC support after indispensable high-temperature annealing up to 800 °C, suggesting enhanced thermal stability. Both PGM catalysts were thoroughly studied in membrane electrode assemblies (MEAs), showing compelling performance and durability. The Pt@MnSA-NC catalyst achieved a mass activity (MA) of 0.63 A mgPt−1 at 0.9 ViR‐free and maintained 78% of its initial performance after a 30,000-cycle accelerated stress test (AST). The L12-Pt3Co@MnSA-NC catalyst accomplished a much higher MA of 0.91 A mgPt−1 and a current density of 1.63 A cm−2 at 0.7 V under traditional light-duty vehicle (LDV) H2−air conditions (150 kPaabs and 0.10 mgPt cm−2). Furthermore, the same catalyst in an HDV MEA (250 kPaabs and 0.20 mgPt cm−2) delivered 1.75 A cm−2 at 0.7 V, only losing 18% performance after 90,000 cycles of the AST, demonstrating great potential to meet the DOE targets. 
    more » « less