skip to main content


Title: Platinum Deposited Nitrogen-Doped Vertically Aligned Carbon Nanofibers as Methanol Tolerant Catalyst for Oxygen Reduction Reaction with Improved Durability
Nitrogen doping in carbon materials can modify the employed carbon material’s electronic and structural properties, which helps in creating a stronger metal-support interaction. In this study, the role of nitrogen doping in improving the durability of Pt catalysts supported on a three-dimensional vertically aligned carbon nanofiber (VACNF) array towards oxygen reduction reaction (ORR) was explored. The nitrogen moieties present in the N-VACNF enhanced the metal-support interaction and contributed to a reduction in the Pt particle size from 3.1 nm to 2.3 nm. The Pt/N-VACNF catalyst showed better durability when compared to Pt/VACNF and Pt/C catalysts with similar Pt loading. DFT calculations validated the increase in the durability of the Pt NPs with an increase in pyridinic N and corroborated the molecular ORR pathway for Pt/N-VACNF. Moreover, the Pt/N-VACNF catalyst was found to have excellent tolerance towards methanol crossover.  more » « less
Award ID(s):
1703263
NSF-PAR ID:
10346856
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Applied Nano
Volume:
2
Issue:
4
ISSN:
2673-3501
Page Range / eLocation ID:
303 to 318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nitrogen‐doped graphitic carbon materials have been widely used as a catalyst support in the methanol oxidation reaction (MOR). In this study, we report the role of three‐dimensionally architectured in‐situ N‐doped vertically aligned carbon nanofibers (VACNF) as a catalyst support for MOR in acidic and alkaline media. The abundant graphitic edge sites at the sidewall of N‐doped VACNF strongly anchor the deposited platinum group metal (PGM) catalysts and induce a partial electron transfer between the PGM catalysts and support. Density Functional Theory (DFT) calculations reveal that the strong metal‐support interaction substantially increases the adsorption energy of OH, particularly near the N‐doping sites, which helps to compete and remove the adsorbed intermediate species generated during MOR. The PGM catalysts on N‐doped VACNF support exhibits CO stripping at lower potentials comparing to the commercial Vulcan carbon support and presents an enhanced electrocatalytic performance and better durability for MOR.

     
    more » « less
  2. null (Ed.)
    Iron single atom catalysts have emerged as one of the most active electrocatalysts towards the oxygen reduction reaction (ORR), but the unsatisfactory durability and limited activity for the oxygen evolution reaction (OER) has hampered their commercial applications in rechargeable metal–air batteries. By contrast, cobalt-based catalysts are known to afford excellent ORR stability and OER activity, due to the weak Fenton reaction and low OER Gibbs free energy. Herein, a bimetal hydrogel template is used to prepare carbon aerogels containing Fe–Co bimetal sites (NCAG/Fe–Co) as bifunctional electrocatalysts towards both ORR and OER, with enhanced activity and stability, as compared to the monometal counterparts. High-resolution transmission electron microscopy, elemental mapping and X-ray photoelectron spectroscopy measurements demonstrate homogeneous distributions of the metal centers within defected carbon lattices by coordination to nitrogen dopants. X-ray absorption spectroscopic measurements, in combination with other results, suggest the formation of FeN 3 and CoN 3 moieties on mutually orthogonal planes with a direct Fe–Co bonding interaction. Electrochemical measurements show that NCAG/Fe–Co delivers a small ORR/OER potential gap of only 0.64 V at the current density of 10 mA cm −2 , 60 mV lower than that (0.70 V) with commercial Pt/C and RuO 2 catalysts. When applied in a flexible Zn–air battery, the dual-metal NCAG/Fe–Co catalyst also shows a remarkable performance, with a high open-circuit voltage of 1.47 V, a maximum power density of 117 mW cm −2 , as well as good rechargeability and flexibility. Results from this study may offer an ingenious protocol in the design and engineering of highly efficient and durable bifunctional electrocatalysts based on dual metal-doped carbons. 
    more » « less
  3. Proton-exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are promising power sources from portable electronic devices to vehicles. The high-cost issue of these low-temperature fuel cells can be primarily addressed by using platinum-group metal (PGM)-free oxygen reduction reaction (ORR) catalysts, in particular atomically dispersed metal–nitrogen–carbon (M–N–C, M = Fe, Co, Mn). Furthermore, a significant advantage of M–N–C catalysts is their superior methanol tolerance over Pt, which can mitigate the methanol cross-over effect and offer great potential of using a higher concentration of methanol in DMFCs. Here, we investigated the ORR catalytic properties of M–N–C catalysts in methanol-containing acidic electrolytes via experiments and density functional theory (DFT) calculations. FeN 4 sites demonstrated the highest methanol tolerance ability when compared to metal-free pyridinic N, CoN 4 , and MnN 4 active sites. The methanol adsorption on MN 4 sites is even strengthened when electrode potentials are applied during the ORR. The negative influence of methanol adsorption becomes significant for methanol concentrations higher than 2.0 M. However, the methanol adsorption does not affect the 4e − ORR pathway or chemically destroy the FeN 4 sites. The understanding of the methanol-induced ORR activity loss guides the design of promising M–N–C cathode catalyst in DMFCs. Accordingly, we developed a dual-metal site Fe/Co–N–C catalyst through a combined chemical-doping and adsorption strategy. Instead of generating a possible synergistic effect, the introduced Co atoms in the first doping step act as “scissors” for Zn removal in metal–organic frameworks (MOFs), which is crucial for modifying the porosity of the catalyst and providing more defects for stabilizing the active FeN 4 sites generated in the second adsorption step. The Fe/Co–N–C catalyst significantly improved the ORR catalytic activity and delivered remarkably enhanced peak power densities ( i.e. , 502 and 135 mW cm −2 ) under H 2 –air and methanol–air conditions, respectively, representing the best performance for both types of fuel cells. Notably, the fundamental understanding of methanol tolerance, along with the encouraging DMFC performance, will open an avenue for the potential application of atomically dispersed M–N–C catalysts in other direct alcohol or ammonia fuel cells. 
    more » « less
  4. Employing the strong metal-support interaction (SMSI) effect for promoting the catalyst's activity toward the oxygen reduction reaction (ORR) is promising due to the electronic structure optimization and high utilization efficiency of platinum group metal (PGM) catalysts. Metal oxides as alternative supports for PGMs facilitate intrinsic activity and improve durability as compared to conventional carbon supports. However, the restricted mass and electron transfer at the metal/support interface need to be addressed. Herein, to strengthen the interaction at the metal/support interfaces and improve the utilization efficiency of PGM, an ultralow loading of Pd was embedded in a surface-oxygenated PdNiMnO porous film. The Mn-doping was designed to promote surface oxygenation using a facile anodization process that created sufficiently exposed interfaces between Pd and the support, strengthening the SMSI effects at the Pd/oxygenated support interface for enhancing ORR performance. Furthermore, the Ni-containing oxygenated catalyst served as both the active component for the oxygen evolution reaction (OER) and the functional support for stabilizing Pd, making PdNiMnO a bifunctional catalyst for zinc–air flow batteries (ZAFB). As a proof-of-concept, the ZAFB (PdNiMnO) shows a maximal power density of 211.6 mW cm −2 and outstanding cycling stability for over 2000 h with a minimal voltage gap of 0.69 V at a current density of 10 mA cm −2 , superior to the state-of-the-art catalysts. 
    more » « less
  5. null (Ed.)
    Clusters of nitrogen- and carbon-coordinated transition metals dispersed in a carbon matrix (e. g., Fe−N−C) have emerged as an inexpensive class of electrocatalysts for the oxygen reduction reaction (ORR). Here, it was shown that optimizing the interaction between the nitrogen-coordinated transition metal clusters embedded in a more stable and corrosion-resistant carbide matrix yielded an ORR electrocatalyst with enhanced activity and stability compared to Fe−N−C catalysts. Utilizing first-principles calculations, an electrostatics-based descriptor of catalytic activity was identified, and nitrogen-coordinated iron (FeN4) clusters embedded in a TiC matrix were predicted to be an efficient platinum-group metal (PGM)-free ORR electrocatalyst. Guided by theory, selected catalyst formulations were synthesized, and it was demonstrated that the experimentally observed trends in activity fell exactly in line with the descriptor-derived theoretical predictions. The Fe−N−TiC catalyst exhibited enhanced activity (20 %) and durability (3.5-fold improvement) compared to a traditional Fe−N−C catalyst. It was posited that the electrostatics-based descriptor provides a powerful platform for the design of active and stable PGM-free electrocatalysts and heterogenous single-atom catalysts for other electrochemical reactions. 
    more » « less