skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regulating Catalytic Properties and Thermal Stability of Pt and PtCo Intermetallic Fuel-Cell Catalysts via Strong Coupling Effects between Single-Metal Site-Rich Carbon and Pt
Developing low platinum-group-metal (PGM) catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs) for heavy- duty vehicles (HDVs) remains a great challenge due to the highly demanded power density and long-term durability. This work explores the possible synergistic effect between single Mn site-rich carbon (MnSA-NC) and Pt nanoparticles, aiming to improve intrinsic activity and stability of PGM catalysts. Density functional theory (DFT) calculations predicted a strong coupling effect between Pt and MnN4 sites in the carbon support, strengthening their interactions to immobilize Pt nanoparticles during the ORR. The adjacent MnN4 sites weaken oxygen adsorption at Pt to enhance intrinsic activity. Well-dispersed Pt (2.1 nm) and ordered L12-Pt3Co nanoparticles (3.3 nm) were retained on the MnSA-NC support after indispensable high-temperature annealing up to 800 °C, suggesting enhanced thermal stability. Both PGM catalysts were thoroughly studied in membrane electrode assemblies (MEAs), showing compelling performance and durability. The Pt@MnSA-NC catalyst achieved a mass activity (MA) of 0.63 A mgPt−1 at 0.9 ViR‐free and maintained 78% of its initial performance after a 30,000-cycle accelerated stress test (AST). The L12-Pt3Co@MnSA-NC catalyst accomplished a much higher MA of 0.91 A mgPt−1 and a current density of 1.63 A cm−2 at 0.7 V under traditional light-duty vehicle (LDV) H2−air conditions (150 kPaabs and 0.10 mgPt cm−2). Furthermore, the same catalyst in an HDV MEA (250 kPaabs and 0.20 mgPt cm−2) delivered 1.75 A cm−2 at 0.7 V, only losing 18% performance after 90,000 cycles of the AST, demonstrating great potential to meet the DOE targets.  more » « less
Award ID(s):
1949870 2016192 1905572
PAR ID:
10520713
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
145
Issue:
32
ISSN:
0002-7863
Page Range / eLocation ID:
17643 to 17655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V ( vs.  RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt 3 M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm −2 . The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions. 
    more » « less
  2. Proton Exchange Membrane (PEM) fuel cells are a suitable electrochemical power source for heavy duty vehicle (HDV) applications due to their high efficiency and durability. The cathode of the fuel cell uses a higher geometric loading of platinum (∼0.2 to 0.4 mgPt/cm2) for the electrocatalysis of the kinetically sluggish Oxygen Reduction Reaction (ORR) which requires higher weight percent loading of the metal (∼50%) on the carbon support to decrease the catalyst layer thickness and hence, the reactant transport losses. The conventionally used supports for platinum catalyst, such as the KetjenBlackTMtype high surface area carbon (HSC) features limited mesopore area for the dispersion of Pt nanoparticles leading to increased aggregation and poor durability. Here, we show a new class of carbon materials known as the Engineered Catalyst Support (ECS) developed by Pajarito Powder with higher mesopore fraction for the dispersion of higher weight percentage of Pt nanoparticles. ECS materials can disperse up to 50% Pt by weight of the catalyst thereby enabling lower catalyst layer thickness with higher performance retained after durability test. A comprehensive set of physico-chemical and electrochemical studies in membrane electrode assembly (MEA) are reported to understand the performance and durability of Pt/ECS catalysts. 
    more » « less
  3. Employing the strong metal-support interaction (SMSI) effect for promoting the catalyst's activity toward the oxygen reduction reaction (ORR) is promising due to the electronic structure optimization and high utilization efficiency of platinum group metal (PGM) catalysts. Metal oxides as alternative supports for PGMs facilitate intrinsic activity and improve durability as compared to conventional carbon supports. However, the restricted mass and electron transfer at the metal/support interface need to be addressed. Herein, to strengthen the interaction at the metal/support interfaces and improve the utilization efficiency of PGM, an ultralow loading of Pd was embedded in a surface-oxygenated PdNiMnO porous film. The Mn-doping was designed to promote surface oxygenation using a facile anodization process that created sufficiently exposed interfaces between Pd and the support, strengthening the SMSI effects at the Pd/oxygenated support interface for enhancing ORR performance. Furthermore, the Ni-containing oxygenated catalyst served as both the active component for the oxygen evolution reaction (OER) and the functional support for stabilizing Pd, making PdNiMnO a bifunctional catalyst for zinc–air flow batteries (ZAFB). As a proof-of-concept, the ZAFB (PdNiMnO) shows a maximal power density of 211.6 mW cm −2 and outstanding cycling stability for over 2000 h with a minimal voltage gap of 0.69 V at a current density of 10 mA cm −2 , superior to the state-of-the-art catalysts. 
    more » « less
  4. Abstract Increasing catalytic activity and durability of atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts for the oxygen reduction reaction (ORR) cathode in proton‐exchange‐membrane fuel cells remains a grand challenge. Here, a high‐power and durable Co–N–C nanofiber catalyst synthesized through electrospinning cobalt‐doped zeolitic imidazolate frameworks into selected polyacrylonitrile and poly(vinylpyrrolidone) polymers is reported. The distinct porous fibrous morphology and hierarchical structures play a vital role in boosting electrode performance by exposing more accessible active sites, providing facile electron conductivity, and facilitating the mass transport of reactant. The enhanced intrinsic activity is attributed to the extra graphitic N dopants surrounding the CoN4moieties. The highly graphitized carbon matrix in the catalyst is beneficial for enhancing the carbon corrosion resistance, thereby promoting catalyst stability. The unique nanoscale X‐ray computed tomography verifies the well‐distributed ionomer coverage throughout the fibrous carbon network in the catalyst. The membrane electrode assembly achieves a power density of 0.40 W cm−2in a practical H2/air cell (1.0 bar) and demonstrates significantly enhanced durability under accelerated stability tests. The combination of the intrinsic activity and stability of single Co sites, along with unique catalyst architecture, provide new insight into designing efficient PGM‐free electrodes with improved performance and durability. 
    more » « less
  5. Abstract Among the multi-metallic nanocatalysts, Pt-based alloy nanocrystals (NCs) have demonstrated promising performance in fuel cells and water electrolyzers. Herein, we demonstrate a facile colloidal synthesis of monodisperse trimetallic Pt–Fe–Ni alloy NCs through a co-reduction of metal precursors. The as-synthesized ternary NCs exhibit superior mass and specific activities toward oxygen reduction reaction (ORR), which are ∼2.8 and 5.6 times as high as those of the benchmark Pt/C catalyst, respectively. The ORR activity of the carbon-supported Pt–Fe–Ni nanocatalyst is persistently retained after the durability test. Owing to the incorporation of Fe and Ni atoms into the Pt lattice, the as-prepared trimetallic Pt-alloy electrocatalyst also manifestly enhances the electrochemical activity and durability toward the oxygen evolution reaction with a reduced overpotential when compared with that of the benchmark Pt/C (△ η = 0.20 V, at 10 mA cm −2 ). This synthetic strategy paves the way for improving the reactivity for a broad range of electrocatalytic applications. 
    more » « less