skip to main content


Title: The Goldilocks effect: female geladas in mid-sized groups have higher fitness
The cost–benefit ratio of group living is thought to vary with group size: individuals in ‘optimally sized’ groups should have higher fitness than individuals in groups that are either too large or too small. However, the relationship between group size and individual fitness has been difficult to establish for long-lived species where the number of groups studied is typically quite low. Here, we present evidence for optimal group size that maximizes female fitness in a population of geladas ( Theropithecus gelada ). Drawing on 14 years of demographic data, we found that females in small groups experienced the highest death rates, while females in mid-sized groups exhibited the highest reproductive performance. This group size effect on female reproductive performance was largely explained by variation in infant mortality (and, in particular, by infanticide from immigrant males) but not by variation in reproductive rates. Taken together, females in mid-sized groups are projected to attain optimal fitness due to conspecific infanticide and, potentially, predation. Our findings provide insight into how and why group size shapes fitness in long-lived species.  more » « less
Award ID(s):
1723228 1854359
NSF-PAR ID:
10346917
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1952
ISSN:
0962-8452
Page Range / eLocation ID:
20210820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Age‐related variation in reproductive performance in long‐lived iteroparous vertebrate species is common, with performance being influenced by within‐individual processes, such as improvement and senescence, in combination with among‐individual processes, such as selective appearance and disappearance. Few studies of age‐related reproductive performance have compared the role of these drivers within a metapopulation, subject to varying degrees of resource competition.

    We accounted for within‐ and among‐individual changes among known‐aged Adélie penguinsPygoscelis adeliaeduring 17 years (1997–2013), at three clustered colonies of disparate size, to understand patterns in age‐related reproductive success during early and late adulthood.

    Age at first reproduction (AFR) was lowest, and number of breeding attempts highest, at the largest colony. Regardless of AFR, success improved with early post‐recruitment experience. For both oldest and youngest recruitment groups, peak performance occurred at the end of their reproductive life span indicating a possible cost of reproduction. Intermediate recruitment groups reached peak performance in their mid‐reproductive life span and with intermediate breeding experience, before decreasing. Breeding success was lowest for the initial breeding attempt regardless of AFR, but we observed subsequent variation relative to recruitment age. Gaining experience by delaying recruitment positively influenced reproductive performance early in the reproductive life span and was most evident for the youngest breeders. Oldest recruits had the highest initial and peak breeding success. Differences in AFR resulted in trade‐offs in reproductive life span or timing of senescence but not in the overall number of breeding attempts.

    Patterns differed as a function of colony size, and thus competition for resources. Early life improvement in performance at the larger colonies was primarily due to within‐individual factors and at the largest colony, AFR. Regardless of colony size late‐life performance was positively related to the age at last reproduction, indicating selective disappearance of lower performing individuals.

    These results highlight that different life‐history strategies were equally successful, indicating that individuals can overcome potential trade‐offs associated with early‐ and late‐life performance. These results have important implications for understanding the evolution of life‐history strategies responsible for driving population change.

     
    more » « less
  2. Abstract

    The social and mating systems of orangutans, one of our closest relatives, remain poorly understood. Orangutans (Pongospp.) are highly sexually dimorphic and females are philopatric and maintain individual, but overlapping home ranges, whereas males disperse, are non-territorial and wide-ranging, and show bimaturism, with many years between reaching sexual maturity and attaining full secondary sexual characteristics (including cheek pads (flanges) and emitting long calls). We report on 21 assigned paternities, among 35 flanged and 15 unflanged, genotyped male Bornean orangutans (Pongo pygmaeus wurmbii), studied from 2003 to 2018 in Tuanan (Central Kalimantan, Indonesia). All 10 infants born since mid-2003 with an already identified sire were sired by flanged males. All adult males ranged well beyond the study area (c. 1000 ha), and their dominance relations fluctuated even within short periods. However, 5 of the 10 identified sires had multiple offspring within the monitored area. Several sired over a period of c. 10 years, which overlapped with siring periods of other males. The long-calling behavior of sires indicated they were not consistently dominant over other males in the area around the time of known conceptions. Instead, when they were seen in the area, the known sires spent most of their time within the home ranges of the females whose offspring they sired. Overall, successful sires were older and more often resident than others.

    Significance statement

    It is difficult to assess reproductive success for individuals of long-lived species, especially for dispersing males, who cannot be monitored throughout their lives. Due to extremely long interbirth intervals, orangutans have highly male-skewed operational sex ratios and thus intensive male-male competition for every conception. Paternity analyses matched 21 immature Bornean orangutans with their most likely sire (only 10 of 50 genotyped males) in a natural population. Half of these identified sires had multiple offspring in the study area spread over periods of at least 10 years, despite frequently ranging outside this area. Dominance was a poor predictor of success, but, consistent with female mating tactics to reduce the risk of infanticide, known “sires” tended to have relatively high local presence, which seems to contribute to the males’ siring success. The results highlight the importance of large protected areas to enable a natural pattern of dispersal and ranging.

     
    more » « less
  3. Abstract

    Age and environment are important determinants of reproductive parameters in long‐lived organisms. These factors may interact to determine breeding responses to environmental change, yet few studies have examined the environmental dependence of aging patterns across the entire life span. We do so, using a 20‐yr longitudinal data set of reproductive phenotypes in long‐lived female Nazca boobies (Sula granti), a monogamous seabird breeding in the eastern tropical Pacific. Young and old females may suffer from inexperience and senescence, respectively, and/or practice reproductive restraint. Breeding performance (for breeding participation, breeding date, clutch size, egg volume, and offspring production) was expected to be lower in these age classes, particularly under environmental challenge, in comparison with middle‐aged breeders. Sea surface temperature anomalies (SSTA) represented interannual variation in the El Niño–Southern Oscillation (ENSO) and were one proxy for environmental quality (a population count of clutch initiations was a second). Although only females lay eggs, both sexes care for eggs and nestlings, and the male partner’s age, alone or in interaction with female age, was evaluated as a predictor of breeding performance. Middle‐aged females performed better than young and old birds for all reproductive traits. Pairing with a young male delayed breeding (particularly for old females) and reduced clutch size, and pairing with an old male reduced offspring production. Challenging environments increased age effects on breeding probability and breeding date across young to middle ages and for offspring production across middle to old ages. However, important exceptions to the predicted patterns for clutch size and fledging success across young to middle ages suggested that trade‐offs between fitness components may complicate patterns of trait expression across the life span. Relationships between breeding participation, environment, and individual quality and/or experience in young females may also contribute to unexpected patterns for clutch size and fledging success, traits expressed only in breeders. Finally, independent of age, breeding responses of female Nazca boobies to the ENSO did not follow expectations derived from oceanic forcing of primary productivity. During El Niño‐like conditions, egg‐laying traits (clutch size, breeding date) improved, but offspring production declined, whereas La Niña‐like conditions were “poor” environments throughout the breeding cycle.

     
    more » « less
  4. Abstract

    Heterogeneity in the intrinsic quality and nutritional condition of individuals affects reproductive success and consequently fitness. Black brant (Branta bernicla nigricans) are long‐lived, migratory, specialist herbivores. Long migratory pathways and short summer breeding seasons constrain the time and energy available for reproduction, thus magnifying life‐history trade‐offs. These constraints, combined with long lifespans and trade‐offs between current and future reproductive value, provide a model system to examine the role of individual heterogeneity in driving life‐history strategies and individual heterogeneity in fitness. We used hierarchical Bayesian models to examine reproductive trade‐offs, modeling the relationships between within‐year measures of reproductive energy allocation and among‐year demographic rates of individual females breeding on the Yukon‐Kuskokwim Delta, Alaska, using capture–recapture and reproductive data from 1988 to 2014. We generally found that annual survival tended to be buffered against variation in reproductive investment, while breeding probability varied considerably over the range of clutch size‐laying date combinations. We provide evidence for relationships between breeding probability and clutch size, breeding probability and nest initiation date, and an interaction between clutch size and initiation date. Average lifetime clutch size also had a weak positive relationship with apparent survival probability. Our results support the use of demographic buffering strategies for black brant. These results also indirectly suggest associations among environmental conditions during growth, fitness, and energy allocation, highlighting the effects of early growth conditions on individual heterogeneity, and subsequently, lifetime reproductive investment.

     
    more » « less
  5. Abstract

    Migratory, long‐lived animals are an important focus for life‐history theory because they manifest extreme trade‐offs in life‐history traits: delayed maturity, low fecundity, variable recruitment rates, long generation times, and vital rates that respond to variation across environments. Galapagos tortoises are an iconic example: they are long‐lived, migrate seasonally, face multiple anthropogenic threats, and have cryptic early life‐history stages for which vital rates are unknown. From 2012 to 2021, we studied the reproductive ecology of two species of Galapagos tortoises (Chelonoidis porteriandC. donfaustoi) along elevation gradients that coincided with substantial changes in climate and vegetation productivity. Specifically, we (1) measured the body and reproductive condition of 166 adult females, (2) tracked the movements of 33 adult females using global positioning system telemetry, and monitored their body condition seasonally, (3) recorded nest temperatures, clutch characteristics, and egg survival from 107 nests, and (4) used radiotelemetry to monitor growth, survival, and movements of 104 hatchlings. We also monitored temperature and rainfall from field sites, and remotely sensed primary productivity along the elevation gradient. Our study showed that environmental variability, mediated by elevation, influenced vital rates of giant tortoises, specifically egg production by adult females and juvenile recruitment. Adult females were either elevational migrants or year‐round lowland residents. Migrants had higher body condition than residents, and body condition was positively correlated with the probability of being gravid. Nests occurred in the hottest, driest parts of the tortoise's range, between 6 and 165 m elevation. Clutch size increased with elevation, whereas egg survival decreased. Hatchling survival and growth were highest at intermediate elevations. Hatchlings dispersed rapidly to 100–750 m from their nests before becoming sedentary (ranging over <0.2 ha). Predicted future climates may impact the relationships between elevation and vital rates of Galapagos tortoises and other species living across elevation gradients. Resilience will be maximized by ensuring the connectivity of foraging and reproductive areas within the current and possible future elevational ranges of these species.

     
    more » « less