The double gyroid structure was first reported in diblock copolymers about 30 years ago, and the complexity of this morphology relative to the other ordered morphologies in block copolymers continues to fascinate the soft matter community. The double gyroid microphase-separated morphology has co-continuous domains of both species, and the minority phase is subdivided into two interpenetrating network structures. In addition to diblock copolymers, this structure has been reported in similar systems including diblock copolymers blended with one or two homopolymers and ABA-type triblock copolymers. Given the narrow composition region over which the double gyroid structure is typically observed (∼3 vol %), anionic polymerization has dominated the synthesis of block copolymers to control their composition and molecular weight. This perspective will highlight recent studies that (1) employ an alternative polymerization method to make block copolymers and (2) report double gyroid structures with lattice parameters below 10 nm. Specifically, step-growth polymerization linked precise polyethylene blocks and short sulfonate-containing blocks to form strictly alternating multiblock copolymers, and these copolymers produce the double gyroid structure over a dramatically wider composition range (>14 vol %). These new (AB)n multiblock copolymers self-assemble into the double gyroid structure by having exceptional control over the polymer architecture and large interaction parameters between the blocks. This perspective proposes criteria for a broader and synthetically more accessible range of polymers that self-assemble into double gyroids and other ordered structures, so that these remarkable structures can be employed to solve a variety of technological challenges.
more »
« less
Double gyroid morphologies in precise ion-containing multiblock copolymers synthesized via step-growth polymerization
The double gyroid structure was first reported in diblock copolymers about 30 years ago, and the complexity of this morphology relative to the other ordered morphologies in block copolymers continues to fascinate the soft matter community. The double gyroid microphase-separated morphology has co-continuous domains of both species, and the minority phase is subdivided into two interpenetrating network structures. In addition to diblock copolymers, this structure has been reported in similar systems including diblock copolymers blended with one or two homopolymers and ABA-type triblock copolymers. Given the narrow composition region over which the double gyroid structure is typically observed (∼3 vol %), anionic polymerization has dominated the synthesis of block copolymers to control their composition and molecular weight. This perspective will highlight recent studies that (1) employ an alternative polymerization method to make block copolymers and (2) report double gyroid structures with lattice parameters below 10 nm. Specifically, step-growth polymerization linked precise polyethylene blocks and short sulfonate-containing blocks to form strictly alternating multiblock copolymers, and these copolymers produce the double gyroid structure over a dramatically wider composition range (>14 vol %). These new (AB)n multiblock copolymers self-assemble into the double gyroid structure by having exceptional control over the polymer architecture and large interaction parameters between the blocks. This perspective proposes criteria for a broader and synthetically more accessible range of polymers that self-assemble into double gyroids and other ordered structures, so that these remarkable structures can be employed to solve a variety of technological challenges.
more »
« less
- Award ID(s):
- 1904767
- PAR ID:
- 10346921
- Date Published:
- Journal Name:
- JACS Au
- ISSN:
- 2691-3704
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
none (Ed.)Abstract By utilizing bicontinuous and nanoporous ordered nanonetworks, such as double gyroid (DG) and double diamond (DD), metamaterials with exceptional optical and mechanical properties can be fabricated through the templating synthesis of functional materials. However, the volume fraction range of DG in block copolymers is significantly narrow, making it unable to vary its porosity and surface‐to‐volume ratio. Here, the theoretically limited structural volume of the DG phase in coil‐coil copolymers is overcome by enlarging the conformational asymmetry through the association of mesogens, providing fast access to achieving flexible structured materials of ultra‐high porosities. The new materials design, dual‐extractable nanocomposite, is created by incorporating a photodegradable block with a solvent‐extractable mesogen (m) into an accepting block, resulting in a new hollow gyroid (HG) with the largely increased surface‐to‐volume ratio and porosity of 77 vol%. The lightweight HG exhibits a low refractive index of 1.11 and a very high specific reduced modulus, almost two times that of the typical negative gyroid (porosity≈53%) and three times that of the positive gyroid (porosity≈24%). This novel concept can significantly extend the DG phase window of block copolymers and the corresponding surface‐to‐volume ratio, being applicable for nanotemplate‐synthesized nanomaterials with a great gain of mechanical, catalytic, and optoelectronic properties.more » « less
-
Preparation of multiblock copolymers via step-wise addition of l -lactide and trimethylene carbonatePoly( l -lactide) (PLA) is a bioderived and biodegradable polymer that has limited applications due to its hard and brittle nature. Incorporation of 1,3-trimethylene carbonate into PLA, in a block copolymer fashion, improves the mechanical properties, while retaining the biodegradability of the polymer, and broadens its range of applications. However, the preparation of 1,3-trimethylene carbonate (TMC)/ l -lactide (LA) copolymers beyond diblock and triblock structures has not been reported, with explanations focusing mostly on thermodynamic reasons that impede the copolymerization of TMC after lactide. We discuss the preparation of multiblock copolymers via the ring opening polymerization (ROP) of LA and TMC, in a step-wise addition, by a ferrocene-chelating heteroscorpionate zinc complex, {[fc(PPh 2 )(BH[(3,5-Me) 2 pz] 2 )]Zn(μ-OCH 2 Ph)} 2 ([(fc P,B )Zn(μ-OCH 2 Ph)] 2 , fc = 1,1′-ferrocenediyl, pz = pyrazole). The synthesis of up to pentablock copolymers, from various combinations of LA and TMC, was accomplished and the physical, thermal, and mechanical properties of the resulting copolymers evaluated.more » « less
-
The effect of composition and morphology on mechanochemical activation in nanostructured block copolymers was investigated in a series of poly(methyl methacrylate)-block-poly(n-butyl acrylate)-block-poly(methyl methacrylate) (PMMA-b-PnBA-b-PMMA) triblock copolymers containing a force-responsive spiropyran unit in the center of the rubbery PnBA midblock. Triblock copolymers with identical PnBA midblocks and varying lengths of PMMA end-blocks were synthesized from a spiropyran-containing macroinitiatior via atom transfer radical polymerization, yielding polymers with volume fractions of PMMA ranging from 0.21 to 0.50. Characterization by transmission electron microscopy revealed that the polymers self-assembled into spherical and cylindrical nanostructures. Simultaneous tensile tests and optical measurements revealed that mechanochemical activation is strongly correlated to the chemical composition and morphologies of the triblock copolymers. As the glassy (PMMA) block content is increased, the overall activation increases, and the onset of activation occurs at lower strain but higher stress, which agrees with predictions from our previous computational work. These results suggest that the self-assembly of nanostructured morphologies can play an important role in controlling mechanochemical activation in polymeric materials and provide insights into how polymer composition and morphology impact molecular-scale force distributions.more » « less
-
Block copolymers at homopolymer interfaces are poised to play a critical role in the compatibilization of mixed plastic waste, an area of growing importance as the rate of plastic accumulation rapidly increases. Using molecular dynamics simulations of Kremer–Grest polymer chains, we have investigated how the number of blocks and block degree of polymerization in a linear multiblock copolymer impacts the interface thermodynamics of strongly segregated homopolymer blends, which is key to effective compatibilization. The second virial coefficient reveals that interface thermodynamics are more sensitive to block degree of polymerization than to the number of blocks. Moreover, we identify a strong correlation between surface pressure (reduction of interfacial tension) and the spatial uniformity of block junctions on the interface, yielding a morphological framework for interpreting the role of compatibilizer architecture (number of blocks) and block degree of polymerization. These results imply that, especially at high interfacial loading, the choice of architecture of a linear multiblock copolymer compatibilizing surfactant does not greatly affect the modification of interfacial tension.more » « less
An official website of the United States government

