skip to main content

Title: Taming salophen in rare earth metallocene chemistry
A series of multinuclear metallocenes composed of a t Bu salophen dianion bound to two rare earth metal ions, where each is encased in a bis-pentamethylcyclopentadienyl scaffold, was realized. The isolated molecules (Cp* 2 RE) 2 (μ- t Bu salophen), where RE = Gd (1), Dy (2), and Y (3), constitute the first salophen-bridged metallocene complexes for any metal ion. 1–3 were characterised by X-ray crystallography, cyclic voltammetry, IR, NMR, and UV-Vis-NIR spectroscopy. Cyclic voltammograms of 1–3 excitingly exhibit quasi-reversable features attributed to the ( t Bu salophen 2− / t Bu salophen 3− ˙) redox couple. DFT calculations on 3 uncovered the highest occupied molecular orbital to be primarily localized on the metallocene and phenolate moieties of the t Bu salophen ligand. Furthermore, the nuclear spin I = ½ for yttrium allowed the collection of 89 Y NMR spectra for 3. Magnetic studies revealed slow magnetic relaxation, placing 2 among dysprosocenium-based single-molecule magnets containing a doubly anionic ligand in the equatorial plane.
; ;
Award ID(s):
Publication Date:
Journal Name:
Inorganic Chemistry Frontiers
Page Range or eLocation-ID:
1325 to 1336
Sponsoring Org:
National Science Foundation
More Like this
  1. The molecular tetravalent oxidation state for praseodymium is observed in solution via oxidation of the anionic trivalent precursor [K][Pr 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (1-Pr(NP*)) with AgI at −35 °C. The Pr 4+ complex is characterized in solution via cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, and EPR spectroscopy. Electrochemical analyses of [K][Ln 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (Ln = Nd and Dy) by cyclic voltammetry are reported and, in conjunction with theoretical modeling of electronic structure and oxidation potential, are indicative of principal ligand oxidations in contrast to the metal-centered oxidation observed for 1-Pr(NP*). The identification of a tetravalent praseodymium complex in in situ UV-vis and EPR experiments is further validated by theoretical modeling of the redox chemistry and the UV-vis spectrum. The latter study was performed by extended multistate pair-density functional theory (XMS-PDFT) and implicates a multiconfigurational ground state for the tetravalent praseodymium complex.
  2. A flexible polydentate bis(amidine) ligand LH 2 , LH 2 = {CH 2 NH( t Bu)CN-2-(6-MePy)} 2 , operates as a molecular lock for various coinage metal fragments and forms the dinuclear complexes [LH 2 (MCl) 2 ], M = Cu (1), Au (2), the coordination polymer [{(LH 2 ) 2 (py) 2 (AgCl) 3 }(py) 3 ] n (3), and the dimesityl-digold complex [LH 2 (AuMes) 2 ] (4) by formal insertion of MR fragments (M = Cu, Ag, Au; R = Cl, Mes) into the N–H⋯N hydrogen bonds of LH 2 in yields of 43–95%. Complexes 1, 2, and 4 adopt C 2 -symmetrical structures in the solid state featuring two interconnected 11-membered rings that are locked by two intramolecular N–H⋯R–M hydrogen bonds. QTAIM analyses of the computational geometry-optimized structures 1a, 2a, and 4a reveal 13, 11, and 22 additional bond critical points, respectively, all of which are related to weak intramolecular attractive interactions, predominantly representing dispersion forces, contributing to the conformational stabilization of the C 2 -symmetrical stereoisomers in the solid state. Variable-temperature 1 H NMR spectroscopy in combination with DFT calculations indicate a dynamic conformational interconversion between two C 2 -symmetrical ground state structures in solutionmore »(Δ G ‡c = 11.1–13.8 kcal mol −1 ), which is accompanied by the formation of an intermediate possessing C i symmetry that retains the hydrogen bonds.« less
  3. The discovery of singular organic radical ligands is a formidable challenge due to high reactivity arising from the unpaired electron. Matching radical ligands with metal ions to engender magnetic coupling is crucial for eliciting preeminent physical properties such as conductivity and magnetism that are crucial for future technologies. The metal-radical approach is especially important for the lanthanide ions exhibiting deeply buried 4f-orbitals. The radicals must possess a high spin density on the donor atoms to promote strong coupling. Combining diamagnetic 89 Y ( I = 1/2) with organic radicals allows for invaluable insight into the electronic structure and spin-density distribution. This approach is hitherto underutilized, possibly owing to the challenging synthesis and purification of such molecules. Herein, evidence of an unprecedented bisbenzimidazole radical anion (Bbim 3− ˙) along with its metalation in the form of an yttrium complex, [K(crypt-222)][(Cp* 2 Y) 2 (μ-Bbim˙)] is provided. Access of Bbim 3− ˙ was feasible through double-coordination to the Lewis acidic metal ion and subsequent one-electron reduction, which is remarkable as Bbim 2− was explicitly stated to be redox-inactive in closed-shell complexes. Two molecules containing Bbim 2− (1) and Bbim 3− ˙ (2), respectively, were thoroughly investigated by X-ray crystallography, NMR and UV/Vismore »spectroscopy. Electrochemical studies unfolded a quasi-reversible feature and emphasize the role of the metal centre for the Bbim redox-activity as neither the free ligand nor the Bbim 2− complex led to analogous CV results. Excitingly, a strong delocalization of the electron density through the Bbim 3− ˙ ligand was revealed via temperature-dependent EPR spectroscopy and confirmed through DFT calculations and magnetometry, rendering Bbim 3− ˙ an ideal candidate for single-molecule magnet design.« less
  4. A family of stable and otherwise selectively unachievable 2,6-bisimino-4- R -1,4-dihydropyridinate aluminium (III) dialkyl complexes [AlR' 2 (4-R- i PrBIPH)] (R = Bn, Allyl; R′ = Me, Et, i Bu) have been synthesized, taking advantage of a method for the preparation of the corresponding 4- R -1,4-dihydropiridine precursors developed in our group. All the dihydropyrdinate(−1) dialkyl aluminium complexes have been fully characterized by 1 H- 13 C-NMR, elemental analysis and in the case 2′a , also by X-ray diffraction studies. Upon heating in toluene solution at 110 °C, the dimethyl derivatives 2a and 2′a dimerize selectively through a double cycloaddition. This reaction leads to the formation of two new C–C bonds that involve the both meta positions of the two 4- R -1,4-dihydropyridinate fragments, resulting the binuclear aluminium species [Me 2 Al(4-R- i PrHBIP)] 2 (R = Bn ( 3a ); allyl ( 3′a )). Experimental kinetics showed that the dimerization of 2′a obeys second order rate with negative activation entropy, which is consistent with a bimolecular rate-determining step. Controlled methanolysis of both 3a and 3′a release the metal-free dimeric bases, (4-Bn- i PrHBIPH) 2 and (4-allyl- i PrHBIPH) 2 , providing a convenient route to these potentially useful ditopicmore »ligands. When the R′ groups are bulkier than Me ( 2b , 2′b and 2′c ), the dimerization is hindered or fully disabled, favoring the formation of paramagnetic NMR-silent species, which have been identified on the basis of a controlled methanolysis of the final organometallic products. Thus, when a toluene solution of [AlEt 2 (4-Bn- i PrBIPH)] ( 2b ) was heated at 110 °C, followed by the addition of methanol in excess, it yields a mixture of the dimer (4-Bn- i PrHBIPH) 2 and the aromatized base 4-Bn- i PrBIP, in ca . 1 : 2 ratio, indicating that the dimerization of 2b competes with its spontaneous dehydrogenation, yielding a paramagnetic complex containing a AlEt 2 unit and a non-innocent (4-Bn- i PrBIP) ˙− radical-anion ligand. Similar NMR monitoring experiments on the thermal behavior of [AlEt 2 (4-allyl- i PrBIPH)] ( 2′b ) and [Al i Bu 2 (4-allyl-iPrBIPH)] ( 2′c ) showed that these complexes do not dimerize, but afford exclusively NMR silent products. When such thermally treated samples were subjected to methanolysis, they resulted in mixtures of the alkylated 4-allyl- i PrBIP and non-alkylated i PrBIP ligand, suggesting that dehydrogenation and deallylation reactions take place competitively.« less
  5. Exposure of 10π-electron benzazaphosphole 1 to HCl, followed by nucleophilic substitution with the Grignard reagent BrMgCCPh afforded alkynyl functionalized 3 featuring an exocyclic –CC–Ph group with an elongated P–C bond (1.7932(19) Å). Stoichiometric experiments revealed that treatment of trans -Pd(PEt 3 ) 2 (Ar)( i ) (Ar = p -Me ( C ) or p -F ( D )) with 3 generated trans -Pd(PEt 3 ) 2 (Ar)(CCPh) (Ar = p -Me ( E ) or p -F ( F )), 5 , which is the result of ligand exchange between P–I byproduct 4 and C/D , and the reductively eliminated product (Ar–CC–Ph). Cyclic voltammetry studies showed and independent investigations confirmed 4 is also susceptible to redox processes including bimetallic oxidative addition to Pd(0) to give Pd( i ) dimer 6-Pd2-(P(t-Bu)3)2 and reduction to diphosphine 7 . During catalysis, we hypothesized that this unwanted reactivity could be circumvented by employing a source of fluoride as an additive. This was demonstrated by conducting a Sonogashira-type reaction between 1-iodotoluene and 3 in the presence of 10 mol% Na 2 PdCl 4 , 20 mol% P( t -Bu)Cy 2 , and 5 equiv. of tetramethylammonium fluoride (TMAF), resulting in turnover and the isolationmore »of Ph–CC–( o -Tol) as the major product.« less