skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Introducing the Bis(mesitoyl)phosphide Ligand into Dinuclear Trivalent Rare Earth Metal Coordination Chemistry
Abstract Anionic ancillary ligands play a critical role in the construction of rare earth (RE) metal complexes due to the large influence on the stability of the molecule and engendering emergent electronic properties that are of interest in a plethora of applications. Supporting ligands comprising oxygen donor atoms are highly pursued in RE chemistry owing to the high oxophilicity innate to these ions. The scarcely employed bis(acyl)phosphide (BAP) ligands feature oxygen coordination sites and contain a phosphide backbone rendering it attractive for RE‐coordination chemistry. Here, we integrate bis(mesitoyl)phosphide (mesBAP) as an ancillary ligand into REIIIchemistry to generate the first dinuclear trivalent RE complexes containing BAP ligands; [{mesBAP}2RE(THF)(μ‐Cl)]2(RE=Y, (1), Gd (2), and Dy (3); THF=tetrahydrofuran). Each RE center is ligated to two monoanionicmesBAP ligands, one THF molecule and one chloride ion. All three molecules were characterized through single‐crystal X‐ray diffraction,31P NMR, IR and UV‐Vis spectroscopy.31P,1H and13C NMR on the diamagnetic yttrium congener1confirm asymmetric ligand coordination. DFT calculations conducted on2provided insight into the electronic structure. The magnetic properties of2and3were investigated via SQUID magnetometry. The GdIIIions exhibit weak antiferromagnetic coupling, corroborated by DFT results.  more » « less
Award ID(s):
2339595
PAR ID:
10535135
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPlusChem
Volume:
89
Issue:
12
ISSN:
2192-6506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For the first time, the capture of the planar antiaromatic parent benzene dianion in between two trivalent rare earth (RE) metal cations (REIII), each stabilized by two guanidinate ligands, is reported. The synthesized inverse‐sandwich complexes [{(Me3Si)2NC(NiPr)2}2RE]2(μ‐η6 : η6‐C6H6), (RE=Y (1), Dy (2), and Er (3)) were crystallized from aprotic solvents and feature a remarkably planar parent benzene dianion, previously not encountered for any metal ion prone to low or absent covalency. The −2 charge localization at the benzene ligand was deduced from the results obtained by single‐crystal X‐ray diffraction analyses, spectroscopy, magnetometry, and Density Functional Theory (DFT) calculations. In the1H NMR spectrum of the diamagnetic Y complex1, the equivalent proton resonance of the bridging benzene dianion ligand is drastically shifted to higher field in comparison to free benzene. This and the calculated highly positive Nucleus‐Independent Chemical Shift (NICS) values are attributed to the antiaromatic character of the benzene dianion ligand. The crucial role of the ancillary guanidinate ligand scaffold in stabilizing the planar benzene dianion conformation was also elucidated by DFT calculations. Remarkably, the planarity of the benzene dianion originates from the stabilization of the π‐type orbitals of the d‐manifold and compression through its strong electrostatic interaction with the two REIIIsites. 
    more » « less
  2. We report here the characterization in solution (NMR, luminescence, MS) and the solid-state (X-ray crystallography, IR) of complexes between phenacyldiphenylphosphine oxide and five Ln( iii ) ions (Sm, Eu, Gd, Tb, Dy). Four single crystal X-ray structures are described here showing a 1 : 2 ratio between the Ln 3+ ions Eu, Dy, Sm and Gd and the ligand, where the phosphine oxide ligands are bound in a monodentate manner to the metal center. A fifth structure is reported for the 1 : 2 Eu(NO 3 ) 3 -ligand complex showing bidentate binding between the two ligands and the metal center. The solution coordination chemistry of these metal complexes was probed by 1 H, 13 C and 31 P NMR, mass spectrometry, and luminescence experiments. The title ligand has the capability to sensitize Tb 3+ , Dy 3+ , Eu 3+ and Sm 3+ leading to metal-centered emission in solutions of acetonitrile and methanol and in the solid state. 
    more » « less
  3. Abstract Lanthanide triflates have been used to incorporate NdIIIand SmIIIions into the 2.2.2‐cryptand ligand (crypt) to explore their reductive chemistry. The Ln(OTf)3complexes (Ln=Nd, Sm; OTf=SO3CF3) react with crypt in THF to form the THF‐soluble complexes [LnIII(crypt)(OTf)2][OTf] with two triflates bound to the metal encapsulated in the crypt. Reduction of these LnIII‐in‐crypt complexes using KC8in THF forms the neutral LnII‐in‐crypt triflate complexes [LnII(crypt)(OTf)2]. DFT calculations on [NdII(crypt)]2+], the first NdIIcryptand complex, assign a 4f4electron configuration to this ion. 
    more » « less
  4. The synthesis of a novel family of homoleptic COT-based heterotrimetallic self-assemblies bearing the formula [LnKCa(COT) 3 (THF) 3 ] (Ln( iii ) = Gd, Tb, Dy, Ho, Er, Tm, and Yb) is reported followed by their X-ray crystallographic and magnetic characterization. All crystals conform to the monoclinic P 2 1 / c space group with a slight compression of the unit cell from 3396.4(2) Å 3 to 3373.2(4) Å 3 along the series. All complexes exhibit a triple-decker structure having the Ln( iii ) and K( i ) ions sandwiched by three COT 2− ligands with an end-bound {Ca 2+ (THF) 3 } moiety to form a non-linear (153.5°) arrangement of three different metals. The COT 2− ligands act in a η 8 -mode with respect to all metal centers. A detailed structural comparison of this unique set of heterotrimetallic complexes has revealed consistent trends along the series. From Gd to Yb, the Ln to ring-centroid distance decreases from 1.961(3) Å to 1.827(2) Å. In contrast, the separation of K( i ) and Ca( ii ) ions from the COT-centroid (2.443(3) and 1.914(3) Å, respectively) is not affected by the change of Ln( iii ) ions. The magnetic property investigation of the [LnKCa(COT) 3 (THF) 3 ] series (Ln( iii ) = Gd, Tb, Dy, Ho, Er, and Tm) reveals that the Dy, Er, and Tm complexes display slow relaxation of their magnetization, in other words, single-molecule magnet (SMM) properties. This behaviour is dominated by thermally activated (Orbach-like) and quantum tunneling processes for [DyKCa(COT) 3 (THF) 3 ] in contrast to [ErKCa(COT) 3 (THF) 3 ], in which the thermally activated and Raman processes appear to be relevant. Details of the electronic structures and magnetic properties of these complexes are further clarified with the help of DFT and ab initio theoretical calculations. 
    more » « less
  5. Abstract Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],1, as well as [K(crypt)][Cp*2NdCl2],2, and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3, was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4. Attempts to make4from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5, which allows direct comparison with the bimetallic Eu(II) complex4. Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6, or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a, depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a. In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9. The (bipy)1−ligands of9are arranged in a parallel orientation, as observed in the structure of3, except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10. 
    more » « less