skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting DNA methylation from genetic data lacking racial diversity using shared classified random effects
Public genomic repositories are notoriously lacking in racially and ethnically diverse samples. This limits the reaches of exploration and has in fact been one of the driving factors for the initiation of the All of Us project. Our particular focus here is to provide a model-based framework for accurately predicting DNA methylation from genetic data using racially sparse public repository data. Epigenetic alterations are of great interest in cancer research but public repository data is limited in the information it provides. However, genetic data is more plentiful. Our phenotype of interest is cervical cancer in The Cancer Genome Atlas (TCGA) repository. Being able to generate such predictions would nicely complement other work that has generated gene-level predictions of gene expression for normal samples. We develop a new prediction approach which uses shared random effects from a nested error mixed effects regression model. The sharing of random effects allows borrowing of strength across racial groups greatly improving predictive accuracy. Additionally, we show how to further borrow strength by combining data from different cancers in TCGA even though the focus of our predictions is DNA methylation in cervical cancer. We compare our methodology against other popular approaches including the elastic net shrinkage estimator and random forest prediction. Results are very encouraging with the shared classified random effects approach uniformly producing more accurate predictions – overall and for each racial group.  more » « less
Award ID(s):
1915976
PAR ID:
10346990
Author(s) / Creator(s):
Date Published:
Journal Name:
Genomics
Volume:
113
ISSN:
0888-7543
Page Range / eLocation ID:
1018-1028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DNA methylation is a process that can affect gene accessibility and therefore gene expression. In this study, a machine learning pipeline is proposed for the prediction of breast cancer and the identification of significant genes that contribute to the prediction. The current study utilized breast cancer methylation data from The Cancer Genome Atlas (TCGA), specifically the TCGA-BRCA dataset. Feature engineering techniques have been utilized to reduce data volume and make deep learning scalable. A comparative analysis of the proposed approach on Illumina 27K and 450K methylation data reveals that deep learning methodologies for cancer prediction can be coupled with feature selection models to enhance prediction accuracy. Prediction using 450K methylation markers can be accomplished in less than 13 s with an accuracy of 98.75%. Of the list of 685 genes in the feature selected 27K dataset, 578 were mapped to Ensemble Gene IDs. This reduced set was significantly (FDR < 0.05) enriched in five biological processes and one molecular function. Of the list of 1572 genes in the feature selected 450K data set, 1290 were mapped to Ensemble Gene IDs. This reduced set was significantly (FDR < 0.05) enriched in 95 biological processes and 17 molecular functions. Seven oncogene/tumor suppressor genes were common between the 27K and 450K feature selected gene sets. These genes were RTN4IP1, MYO18B, ANP32A, BRF1, SETBP1, NTRK1, and IGF2R. Our bioinformatics deep learning workflow, incorporating imputation and data balancing methods, is able to identify important methylation markers related to functionally important genes in breast cancer with high accuracy compared to deep learning or statistical models alone. 
    more » « less
  2. Abstract The effect of DNA methylation on the regulation of gene expression has been extensively discussed in the literature. However, the potential association between DNA methylation and alternative splicing is not understood well. In this study, we integrated multiple omics data types from The Cancer Genome Atlas (TCGA) and systematically examined the relationship between DNA methylation and alternative splicing. Using the methylation data and exon expression data, we identified many CpG sites significantly associated with exon expression in various types of cancers. We further observed that the direction and strength of significant CpG-exon correlation tended to be consistent across different cancer contexts, indicating that some CpG-exon correlation patterns reflect fundamental biological mechanisms that transcend tissue- and cancer- types. We also discovered that CpG sites correlated with exon expressions were more likely to be associated with patient survival outcomes compared to CpG sites that did not correlate with exon expressions. Furthermore, we found that CpG sites were more strongly correlated with exon expression than expression of isoforms harboring the corresponding exons. This observation suggests that a major effect of CpG methylation on alternative splicing may be related to the inclusion or exclusion of exons, which subsequently impacts the relative usage of various isoforms. Overall, our study revealed correlation patterns between DNA methylation and alternative splicing, which provides new insights into the role of methylation in the transcriptional process. 
    more » « less
  3. Abstract Accurate HPV genotyping is crucial in facilitating epidemiology studies, vaccine trials, and HPV-related cancer research. Contemporary HPV genotyping assays only detect < 25% of all known HPV genotypes and are not accurate for low-risk or mixed HPV genotypes. Current genomic HPV genotyping algorithms use a simple read-alignment and filtering strategy that has difficulty handling repeats and homology sequences. Therefore, we have developed an optimized expectation–maximization algorithm, designated HPV-EM, to address the ambiguities caused by repetitive sequencing reads. HPV-EM achieved 97–100% accuracy when benchmarked using cell line data and TCGA cervical cancer data. We also validated HPV-EM using DNA tiling data on an institutional cervical cancer cohort (96.5% accuracy). Using HPV-EM, we demonstrated HPV genotypic differences in recurrence and patient outcomes in cervical and head and neck cancers. 
    more » « less
  4. Background: Colorectal cancer (CRC) is a term that refers to the combination of colon and rectal cancer as they are being treated as a single tumor. In CRC, 72% of tumors are colon cancer, while the other 28% represent rectal cancer. CRC is a multifactorial disease caused by both genetic and epigenetic changes in the colon mucosal cells, affecting the oncogenes, DNA repair genes, and tumor suppressor genes. Currently, two DNA methylation-based biomarkers for CRC have received FDA approval: SEPT9, used in blood-based screening tests, and a combination of NDRG4 and BMP3 for stool-based tests. Although DNA methylation biomarkers have been explored in colorectal cancer (CRC), the identification of robust and clinically valuable biomarkers remains a challenge, particularly for early-stage detection and precancerous lesions. Patients often receive diagnoses at the locally advanced stage, which limits the potential utility of current biomarkers in clinical settings. Methods: The datasets used in this study were retrieved from the GEO database, specifically GSE75548 and GSE75546 for rectal cancer and GSE50760 and GSE101764 for colon cancer, summing up to a total of 130 paired samples. These datasets represent expression profiling by array, methylation profiling by genome tiling array, and expression profiling by high-throughput sequencing and include rectal and colon cancer samples paired with adjacent normal tissue samples. Differential analysis was used to identify differentially methylated CPG sites (DMCs) and identify differentially expressed genes (DEGs). Results: From the integration of DMCs with DEGs in colorectal cancer, we identified 150 candidates for methylation-regulated genes (MRGs) with two genes common across all cohorts (GNG7 and PDX1) highlighted as candidate biomarkers in CRC. The functional enrichment analysis and protein–protein interactions (PPIs) identified relevant pathways involved in CRC, including the Wnt signaling pathway, extracellular matrix (ECM) organization, among other enriched pathways. Conclusions: Our findings show the strength of our in silco computational approach in jointly identifying methylation-regulated biomarkers for colon cancer and highlight several genes and pathways as biomarker candidates for further investigations. 
    more » « less
  5. Cancer is a complex disease associated with abnormal DNA mutations. Not all tumors are cancerous and not all cancers are the same. Correct cancer type diagnosis can indicate the most effective drug therapy and increase survival rate. At the molecular level, it has been shown that cancer type classification can be carried out from the analysis of somatic point mutation. However, the high dimensionality and sparsity of genomic mutation data, coupled with its small sample size has been a hindrance in accurate classification of cancer. We address these problems by introducing a novel classification method called mClass that accounts for the sparsity of the data. mClass is a feature selection method that ranks genes based on their similarity across samples and employs their normalized mutual information to determine the set of genes that provide optimal classification accuracy. Experimental results on TCGA datasets show that mClass significantly improves testing accuracy compared to DeepGene, which is the state-of-the-art in cancer-type classification based on somatic mutation data. In addition, when compared with other cancer gene prediction tools, the set of genes selected by mClass contains the highest number of genes in top 100 genes listed in the Cancer Gene Census. mClass is available at https://github.com/mdahasan/mClass. 
    more » « less