skip to main content


Title: Preliminary Analyses (WIP): Patterns in Student Response to a Team Communication Intervention
This work-in-progress paper reports on the assessment of an intervention on team communication and decision making processes to see whether such an intervention is related to improvement in the rating of equity of idea contributions. A hierarchical linear model was fit to teamwork data from 3,721 students in 40 courses. We find that students’ reports of equitable idea sharing are actually lower after the intervention than before; we hypothesize that the decreased rating might reflect increased student awareness of inequities rather than a true decrease in equitable idea sharing. This pattern held for most gender and racial groups, with the notable exception of non-binary students, who instead reported greater idea equity post-intervention, though we note the small sample size for this group. Finally, we find that decreases in reported idea sharing were largest when students reported the intervention was “highly relevant” to their team yet “not very helpful”.  more » « less
Award ID(s):
2120252
NSF-PAR ID:
10347050
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
American Society for Engineering Education (ASEE) Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reports on a project funded through the Engineering Education and Centers (EEC) Division of the National Science Foundation. Since 2010, EEC has funded more than 500 proposals totaling over $150 million through engineering education research (EER) programs such as Research in Engineering Education (REE) and Research in the Formation of Engineers (RFE), to enhance understanding and improve practice. The resulting archive of robust qualitative and quantitative data represents a vast untapped potential to exponentially increase the impact of EEC funding and transform engineering education. But tapping this potential has thus far been an intractable problem, despite ongoing calls for data sharing by public funders of research. Changing the paradigm of single-use data collection requires actionable, proven practices for effective, ethical data sharing, coupled with sufficient incentives to both share and use existing data. To that end, this project draws together a team of experts to overcome substantial obstacles in qualitative data sharing by building a framework to guide secondary analysis in engineering education research (EER), and to test this framework using pioneering data sets. Herein, we report on accomplishments within the first year of the project during which time we gathered a group of 13 expert qualitative researchers to engage in the first of a series of working meetings intended to meet our project goals. We came into this first workshop with a potentially limiting definition of secondary data analysis and the idea that people would want to share existing datasets if we could find ways around anticipated hurdles. However, the workshop yielded a broader definition of secondary data analysis and revealed a stronger interest in creating new datasets designed for sharing rather than sharing existing datasets. Thus, we have reconceived our second phase as one that is a cohesive effort based on an inclusive “open cohort model” to pilot projects related to secondary data analysis. 
    more » « less
  2. As computing courses become larger, students of minoritized groups continue to disproportionately face challenges that hinder their academic and professional success (e.g. implicit bias, microaggressions, lack of resources, assumptions of preparatory privilege). This can impact career aspirations and sense of belonging in computing communities. Instructors have the power to make immediate changes to support more equitable learning, but they are often unaware of students' challenges. To help both instructors and students understand the inequities in their classes, we developed StudentAmp, an interactive system that uses student feedback and self-reported demographic information (e.g. gender, ethnicity, disability, educational background) to show challenges and how they affect students differently. To help instructors make sense of feedback, StudentAmp ranks challenges by student-perceived disruptiveness. We conducted formative evaluations with five large college computing courses (150 - 750 students) being taught remotely during the COVID-19 pandemic. We found that students shared challenges beyond the scope of the course, perceived sharing information about who they were as useful but potentially dangerous, and that teaching teams were able to use this information to consider the positionality of students sharing challenges. Our findings relate to a central design tension of supporting equity by sharing contextualized information about students while also ensuring their privacy and well-being. 
    more » « less
  3. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less
  4. Abstract

    Diversity, equity, and inclusion (DEI) are interconnected with bioengineering, yet have historically been absent from accreditation standards and curricula. Toward educating DEI-competent bioengineers and meeting evolving accreditation requirements, we took a program-level approach to incorporate, catalog, and assess DEI content through the bioengineering undergraduate program. To support instructors in adding DEI content and inclusive pedagogy, our team developed a DEI planning worksheet and surveyed instructors pre- and post-course. Over the academic year, 74% of instructors responded. Of responding instructors, 91% described at least one DEI curricular content improvement, and 88% incorporated at least one new inclusive pedagogical approach. Based on the curricular adjustments reported by instructors, we grouped the bioengineering-related DEI content into five DEI competency categories: bioethics, inclusive design, inclusive scholarship, inclusive professionalism, and systemic inequality. To assess the DEI content incorporation, we employed direct assessment via course assignments, end-of-module student surveys, end-of-term course evaluations, and an end-of-year program review. When asked how much their experience in the program helped them develop specific DEI competencies, students reported a relatively high average of 3.79 (scale of 1 = “not at all” to 5 = “very much”). Additionally, based on student performance in course assignments and other student feedback, we found that instructors were able to effectively incorporate DEI content into a wide variety of courses. We offer this framework and lessons learned to be adopted by programs similarly motivated to train DEI-competent engineering professionals and provide an equitable, inclusive education.

     
    more » « less
  5. Recent studies reveal people from marginalized groups (e.g., people of color and women) continue to earn physics degrees at alarmingly low rates. This phenomenon is not surprising given reports of the continued perception of physics as a masculine space and the discrimination faced by people of color and women within the field. To realize the vision of an equitable physics education, fully open to and supportive of marginalized groups, teachers need ways of seeing equity as something that is concrete and actionable on an everyday basis. In our work, teachers have found value in intentionally reflecting on their instruction and their students explicitly in terms of race, gender, and other social markers. We find they are then better positioned to build equitable physics classrooms. Without a focus on specific social markers, common obstacles such as color-evasiveness emerge, which obstruct the pursuit of equity in classrooms. 
    more » « less