skip to main content


Title: Tracking Inequity: An Actionable Approach to Addressing Inequities in Physics Classrooms
Recent studies reveal people from marginalized groups (e.g., people of color and women) continue to earn physics degrees at alarmingly low rates. This phenomenon is not surprising given reports of the continued perception of physics as a masculine space and the discrimination faced by people of color and women within the field. To realize the vision of an equitable physics education, fully open to and supportive of marginalized groups, teachers need ways of seeing equity as something that is concrete and actionable on an everyday basis. In our work, teachers have found value in intentionally reflecting on their instruction and their students explicitly in terms of race, gender, and other social markers. We find they are then better positioned to build equitable physics classrooms. Without a focus on specific social markers, common obstacles such as color-evasiveness emerge, which obstruct the pursuit of equity in classrooms.  more » « less
Award ID(s):
1741575
NSF-PAR ID:
10439258
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Physics Teacher
Volume:
60
Issue:
6
ISSN:
0031-921X
Page Range / eLocation ID:
414 to 418
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The dearth of women and people of color in the field of computer science is a well-documented phenomenon. Following Obama's 2016 declaration of the need for a nationwide CS for All movement in the US, educators, school districts, states and the US-based National Science Foundation have responded with an explosion of activity directed at developing computer science learning opportunities in K-12 settings. A major component of this effort is the creation of equitable CS learning opportunities for underrepresented populations. As a result, there exists a strong need for educational research on the development of equity-based theory and practice in CS education. This poster session reports on a work-in-progress study that uses a case study approach to engage twenty in-service elementary school teachers in reflecting on issues of equity in CS education as part of a three-day CS professional development workshop. Our work is unfolding in the context of a four-year university/district research practice partnership in a mid-sized city in the Northeastern United States. Teachers in our project are working to co-design integrated CS curriculum units for K-5 classrooms. We developed four case studies, drawn from the first year of our project, that highlight equity challenges teachers faced in the classroom when implementing the CS lessons. The case studies follow the "Teacher Moments" template created by the Teaching Systems Lab in Open Learning at MIT. The case study activity is meant to deepen reflection and discussion on how to create equitable learning opportunities for elementary school students. We present preliminary findings. 
    more » « less
  2. In this paper, we outline how science teachers might engage in the work of creating educational equity. While acknowledging the historical inherent inequities associated with issues of access, opportunities to engage in science learning for individuals of marginalized identities (e.g., BIPOC individuals and women), and achievement, we broaden this definition to include social justice as a framework by which we can develop opportunities for the fostering of students' affinity identities with science. To this end, we draw on theorizations of equity within educational research, specifically discussed as excellence, equality, fairness, a zero-sum game, and most recently, social justice. Additionally, we utilize McKinney de Royston and Nasir's (2017) Racialized Learning Ecologies framework. This framework provides a useful lens to notice the layers of (in)equity within education. We then extend this ecological model into science education and present three lenses (i.e., layers) through which equity operates within science teaching and learning. We conclude with a discussion of the practical implications of doing the work of equity, that is, recognizing, interpreting, and redressing inequity in science classrooms. Ultimately, we provide an actionable definition of equity that has the potential to facilitate transformative and socially just science teaching and learning. 
    more » « less
  3. When confronted with systematic racism, social justice, and equity issues, engineering and STEM education often assumes that these topics will be covered in other courses and are not relevant to STEM. However, engineering as a discipline has one of the greatest effects on society’s well-being. From the raw materials used, products created, and emissions generated, all aspects of engineering have direct and indirect impacts on humanity. Our current engineering education project works with upper elementary and middle school teachers to apply a culturally relevant engineering design (CRED) framework within their classrooms. This framework is adapted from UTeachEngineering and culturally relevant pedagogy from Gay and Billings is embedded within each step of the design process. The North Dakota Native American Essential Understandings are used to frame and inform the culturally relevant pedagogy. Tribal elder’s stories and experiences are centered along with community leaders in each of the school’s communities. Responses from students and teachers has been overwhelmingly positive. Teachers have noticed increased engagement from all students when cultural and community leaders have been invited into the classroom and involved in the engineering design process. Students who normally do not see themselves represented in STEM professions have taken active leadership roles in their group’s engineering design process. Teachers have also recognized that culturally relevant pedagogy can be utilized in all aspects of their curricula. With the success of the project in elementary and middle school classrooms, the question then became, how can we see similar success in our college classrooms? When brainstorming how to incorporate culture and community in our curricula it became apparent that best practices in engineering education have the opportunity to intentionally involve community and cultural leaders. ABET learning outcomes require the “consideration of public health, safety, and welfare” in engineering design and “the impact of engineering solutions in global, economic, environmental, and societal contexts.” When making engineering design decisions, who will be affected if there is an accidental release of chemicals to the environment? Which communities are affected by global warming? Will the public be able to afford the new product that is being produced? Will the new processes or products add value to people’s lives? And how do we train future engineers to consider all community members, not just those who look like them, but those from the most marginalized groups? This talk will introduce our culturally relevant engineering design framework, provide ways to include community and cultural leaders within courses, and how, with the help of Northwestern’s Anti-Racism, Diversity, Equity and Inclusion resources, to create homework problems that reflect social justice and equity issues within engineering 
    more » « less
  4. There have been many initiatives to improve the experiences of marginalized engineering students in order to increase their desire to pursue the field of engineering. However, despite these efforts, workforce numbers indicate lingering disparities. Representation in the science and engineering workforce is low with women comprising only 16% of those in science and engineering occupations in 2019, and underrepresented minorities (e.g., Black, Hispanic, and American Indian/Alaskan Native) collectively representing only approximately 20% (National Center for Science and Engineering Statistics [NCSES], 2022). Additionally, engineering has historically held cultural values that can exclude marginalized populations. Cech (2013) argues that engineering has supported a meritocratic ideology in which intelligence is something that you are born with rather than something you can gain. Engineering, she argues, is riddled with meritocratic regimens that include such common practices as grading on a curve and “weeding” out students in courses.Farrell et al. (2021) discuss how engineering culture is characterized by elitism through practices of epistemological dominance (devaluing other ways of knowing), majorism (placing higher value on STEM over the liberal arts), and technical social dualism (the belief that issues of diversity, equity, and inclusion should not be part of engineering). These ideologies can substantially affect the persistence of both women and people of color–populations historically excluded in engineering, because their concerns and/or cultural backgrounds are not validated by instructors or other peers which reproduces inequality. Improving student-faculty interactions through engineering professional development is one way to counteract these harmful cultural ideologies to positively impact and increase the participation of marginalized engineering students. STEM reform initiatives focused on faculty professional development, such as the NSF INCLUDES Aspire Alliance (Aspire), seek to prepare and educate faculty to integrate inclusive practices across their various campus roles and responsibilities as they relate to teaching, advising, research mentoring, collegiality, and leadership. The Aspire Summer Institute (ASI) has been one of Aspire’s most successful programs. The ASI is an intensive, week-long professional development event focused on educating institutional teams on the Inclusive Professional Framework (IPF) and how to integrate its components, individually and as teams, to improve STEM faculty inclusive behaviors. The IPF includes the domains of identity, intercultural awareness, and relational skill-building (Gillian-Daniel et al., 2021). Identity involves understanding not only your personal cultural identity but that of students and the impact of identity in learning spaces. Intercultural awareness involves instructors being able to navigate cultural interactions in a positive way as they consider the diverse backgrounds of students, while recognizing their own privileges and biases. Relational involves creating trusting relationships and a positive communication flow between instructors and students. The ASI and IPF can be used to advance a more inclusive environment for marginalized students in engineering. In this paper, we discuss the success of the ASI and how the institute and the IPF could be adapted specifically to support engineering faculty in their teaching, mentoring, and advising. 
    more » « less
  5. Abstract

    Science as an enterprise has been and continues to be exclusionary, perpetuating inequities among whose voice is heard as well as what/whose knowledge is recognized as valid. Women, people of color, and persons with disabilities are still vastly outnumbered in science and engineering by their White, male counterparts. These types of imbalances create a gatekeeping culture of inequity and inaccessibility, particularly for traditionally underrepresented students. Science classrooms, especially at the undergraduate level, strive to mimic the broader practices of the scientific community and therefore have tremendous potential to perpetuate the exclusion of certain groups of people. They also have, however, the potential to be a catalyst for equitable participation in science. Utilizing pedagogies of empowerment such as culturally responsive science teaching (CRST) in undergraduate classrooms can mitigate the gatekeeping phenomenon seen in science. Teaching assistants (TAs) engage in more one‐on‐one time with students than most faculty in undergraduate biology education, yet minimal pedagogical training is offered to them. Therefore, training for improved pedagogical knowledge is important for TAs, but training for CRST is critical as TAs have broad and potentially lasting impact on students. This study explores the ways in which undergraduate biology TAs enact CRST. Using constructivist grounded theory methods, this study examined TAs' reflections, observation field notes, semistructured interviews, and focus groups to develop themes surrounding their enactment of CRST. Findings from this study showed that undergraduate biology TAs enact CRST in ways described by four themes:Funds of Knowledge Connections,Differentiating Instruction,Intentional Scaffolding, andReducing Student Anxiety. These findings provide new insights into the ways undergraduate science education might be reimagined to create equitable science learning opportunities for all students.

     
    more » « less