skip to main content


Title: Pair Spectrometer for FACET-II
We present the design of a pair spectrometer for use at FACET-II, where there is a need for spectroscopy of photons having energies up to 10 GeV. Incoming gammas are converted to high-energy positron-electron pairs, which are then subsequently analyzed in a dipole magnet. These charged particles are then recorded in arrays of acrylic Cherenkov counters, which are significantly less sensitive to background x-rays than scintillator counters in this case. To reconstruct energies of single high-energy photons, the spectrometer has a sensitivity to single positron-electron pairs. Even in this single-photon limit, there is always some low-energy continuum present, so spectral deconvolution is not trivial, for which we demonstrate a maximum likelihood reconstruction. Finally, end-to-end simulations of experimental scenarios, together with anticipated backgrounds, are presented.  more » « less
Award ID(s):
2012549
NSF-PAR ID:
10347083
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
IPAC
ISSN:
2673-5490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Black hole and neutron star environments often comprise collisionless plasmas immersed in strong magnetic fields and intense baths of low-frequency radiation. In such conditions, relativistic magnetic reconnection can tap the magnetic field energy, accelerating high-energy particles that rapidly cool by inverse Compton (IC) scattering the dense photon background. At the highest particle energies reached in bright gamma-ray sources, IC scattering can stray into the Klein–Nishina regime. Here, the Comptonized photons exceed pair-production threshold with the radiation background and may thus return their energy to the reconnecting plasma as fresh electron–positron pairs. To reliably characterize observable signatures of such Klein–Nishina reconnection, in this work, we present first-principles particle-in-cell simulations of pair-plasma relativistic reconnection coupled to Klein–Nishina and pair-production physics. The simulations show substantial differences between the observable signatures of Klein–Nishina reconnection and reconnection coupled only to low-energy Thomson IC cooling (without pair production). The latter regime exhibits strong harder-when-brighter behaviour; the former involves a stable spectral shape independent of overall brightness. This spectral stability is reminiscent of flat-spectrum radio quasar (FSRQ) GeV high states, furnishing evidence that Klein–Nishina radiative physics operates in FSRQs. The simulated Klein–Nishina reconnection pair yield spans from low to order-unity and follows an exponential scaling law in a single governing parameter. Pushing this parameter beyond its range studied here might give way to a copious pair-creation regime. Besides FSRQs, we discuss potential applications to accreting black hole X-ray binaries, the M87* magnetosphere, and gamma-ray binaries.

     
    more » « less
  2. Abstract Single-photon counters are single-pixel binary devices that click upon the absorption of a photon but obscure its spectral information, whereas resolving the color of detected photons has been in critical demand for frontier astronomical observation, spectroscopic imaging and wavelength division multiplexed quantum communications. Current implementations of single-photon spectrometers either consist of bulky wavelength-scanning components or have limited detection channels, preventing parallel detection of broadband single photons with high spectral resolutions. Here, we present the first broadband chip-scale single-photon spectrometer covering both visible and infrared wavebands spanning from 600 nm to 2000 nm. The spectrometer integrates an on-chip dispersive echelle grating with a single-element propagating superconducting nanowire detector of ultraslow-velocity for mapping the dispersed photons with high spatial resolutions. The demonstrated on-chip single-photon spectrometer features small device footprint, high robustness with no moving parts and meanwhile offers more than 200 equivalent wavelength detection channels with further scalability. 
    more » « less
  3. ABSTRACT

    Very-high-energy (VHE) photons around TeV energies from a gamma-ray burst (GRB) jet will play an essential role in the multimessenger era, with a fair fraction of the events being observed off-axis to the jet. We show that different energy photons (MeV and TeV photons in particular) arrive from different emission zones for off-axis observers even if the emission radius is the same. The location of the emission region depends on the jet structure of the surface brightness, and the structures are generally different at different energies, mainly due to the attenuation of VHE photons by electron–positron pair creation. This off-axis zone-shift effect does not justify the usual assumption of the one emission zone at a certain radius and also produces a time delay of VHE photons comparable to the GRB duration, which is crucial for future VHE observations, such as by the Cherenkov Telescope Array.

     
    more » « less
  4. Abstract

    The recent discovery of astrophysical neutrinos from the Seyfert galaxy NGC 1068 suggests the presence of nonthermal protons within a compact “coronal” region close to the central black hole. The acceleration mechanism of these nonthermal protons remains elusive. We show that a large-scale magnetic reconnection layer, of the order of a few gravitational radii, may provide such a mechanism. In such a scenario, rough energy equipartition between magnetic fields, X-ray photons, and nonthermal protons is established in the reconnection region. Motivated by recent 3D particle-in-cell simulations of relativistic reconnection, we assume that the spectrum of accelerated protons is a broken power law, with the break energy being constrained by energy conservation (i.e., the energy density of accelerated protons is at most comparable to the magnetic energy density). The proton spectrum isdnp/dEpEp1below the break anddnp/dEpEpsabove the break, with IceCube neutrino observations suggestings≃ 3. Protons above the break lose most of their energy within the reconnection layer via photohadronic collisions with the coronal X-rays, producing a neutrino signal in good agreement with the recent observations. Gamma rays injected in photohadronic collisions are cascaded to lower energies, sustaining the population of electron–positron pairs that makes the corona moderately Compton thick.

     
    more » « less
  5. Abstract

    The electric field surrounding a single positron in a metal is screened by an increase in the local electron density which, in the case of nearly free-electron metals (like Al, Na, etc.), has a radial distribution similar to that of the electron in positronium (Ps). In such metals, a singlet pair of positrons would experience an attractive interaction and at low enough electron densities could possibly form a bound state that is held together by exchange and correlation energies, thus forming structures analogous to that of the positronium molecule (Ps$$_2$$2), with binding energies of a few tenths of an eV. Such di-positrons could be prevalent at positron densities of around 10$$^{18}$$18cm$$^{-3}$$-3and, if so, would be evident from an apparent broadening of the sharp step at the Fermi surface in measurements of the electron momentum distribution by the angular correlation of the 2$$\gamma $$γannihilation radiation. Even if di-positrons are not directly formed in a metal, optical spectroscopy of Ps$$_2$$2formed in vacuum via pairs of positrons simultaneously being emitted from the surface could be applied to the direct measurement of the momentum distribution of Cooper pairs. If they exist, di-positrons in metals would yield interesting information about electron and positron interactions and at very high densities might allow the study of a di-positron Bose–Einstein condensate immersed in an electron gas.

    Graphic Abstract 
    more » « less