This content will become publicly available on November 1, 2023
- Publication Date:
- NSF-PAR ID:
- 10347143
- Journal Name:
- Journal of Fluids Engineering
- Volume:
- 144
- Issue:
- 11
- ISSN:
- 0098-2202
- Sponsoring Org:
- National Science Foundation
More Like this
-
This work aims at comparing the accuracy and overall performance of a low-Mach CFD solver and a fully-compressible CFD solver for direct numerical simulation (DNS) of nonequilibrium plasma assisted ignition (PAI) using a phenomenological model described in Castela et al. [1]. The phenomenological model describes the impact of nanosecond pulsed plasma discharges by introducing source terms in the reacting flow equations, instead of solving the detailed plasma kinetics at every time step of the discharge. Ultra-fast gas heating and dissociation ofO2 are attributed to the electronic excitation ofN2 and the subsequent quenching to ground state. This process is highly exothermic, and is responsible for dissociation of O2 to form O radicals; both of which promote faster ignition. Another relatively slower process of gas heating associated with vibrational-to-translational relaxation is also accounted for, by solving an additional vibrational energy transport equation. A fully-compressible CFD solver for high Mach (M>0.2) reacting flows, developed by extending the default rhoCentralFoam solver in OpenFOAM, is used to perform DNS of PAI in a 2D domain representing a cross section of a pin-to-pin plasma discharge configuration. The same case is also simulated using a low-Mach, pressure-based CFD solver, built by extending the default reactingFoam solver. Themore »
-
Flow in the inverted U-shaped tube of a conventional siphon can be established and maintained only if the tube is filled and closed, so that air does not enter. We report on siphons that operate entirely open to the atmosphere by exploiting surface tension effects. Such capillary siphoning is demonstrated by paper tissue that bridges two containers and conveys water from the upper to the lower. We introduce a more controlled system consisting of grooves in a wetting solid, formed here by pressing together hook-shaped metallic rods. The dependence of flux on siphon geometry is systematically measured, revealing behaviour different from the conventional siphon. The flux saturates when the height difference between the two container's free surfaces is large; it also has a strong dependence on the climbing height from the source container's free surface to the apex. A one-dimensional theoretical model is developed, taking into account the capillary pressure due to surface tension, pressure loss due to viscous friction, and driving by gravity. Numerical solutions are in good agreement with experiments, and the model suggests hydraulic interpretations for the observed flux dependence on geometrical parameters. The operating principle and characteristics of capillary siphoning revealed here can inform biological phenomenamore »
-
Abstract Groundwater discharge is an important mechanism through which fresh water and associated solutes are delivered to the ocean. Permafrost environments have traditionally been considered hydrogeologically inactive, yet with accelerated climate change and permafrost thaw, groundwater flow paths are activating and opening subsurface connections to the coastal zone. While warming has the potential to increase land-sea connectivity, sea-level change has the potential to alter land-sea hydraulic gradients and enhance coastal permafrost thaw, resulting in a complex interplay that will govern future groundwater discharge dynamics along Arctic coastlines. Here, we use a recently developed permafrost hydrological model that simulates variable-density groundwater flow and salinity-dependent freeze-thaw to investigate the impacts of sea-level change and land and ocean warming on the magnitude, spatial distribution, and salinity of coastal groundwater discharge. Results project both an increase and decrease in discharge with climate change depending on the rate of warming and sea-level change. Under high warming and low sea-level rise scenarios, results show up to a 58% increase in coastal groundwater discharge by 2100 due to the formation of a supra-permafrost aquifer that enhances freshwater delivery to the coastal zone. With higher rates of sea-level rise, the increase in discharge due to warming is reducedmore »
-
The primary goal of the project is to leverage recent developments in smart water technologies to detect and reduce water leakages in large water distribution networks with the aid of neural networks. A cost effective non-invasive solution to detect leakages in transmission pipelines is needed by many water utilities as it will lead to significant water savings and reduced pipe breakage frequencies, especially in older infrastructure systems. The eventual goal of the project is to test the ANN model on a real network using field measured pressure and pipe breakage data after tuning and developing the model with simulated data. In this project we propose building a regression model, based on Multi-Layer Perceptron (MLP) algorithm, which is a class of feedforward Artificial Neural Networks (ANNs) to detect the leak locations within a proposed network. The model should be able to learn the structure, i.e. mapping of various leak nodes and sensor nodes in an area, such that it can detect the leak nodes based on the pressure values with significant accuracy.
-
Abstract With projected temperature increases and extreme events due to climate change for many regions of the world, characterizing the impacts of these emerging hazards on water distribution systems is necessary to identify and prioritize adaptation strategies for ensuring reliability. To aid decision-making, new insights are needed into how water distribution system reliability to climate-driven heat will change, and the proactive maintenance strategies available to combat failures. To this end, we present the model Perses, a framework that joins a water distribution network hydraulic solver with reliability models of physical assets or components to estimate temperature increase-driven failures and resulting service outages in the long term. A theoretical case study is developed using Phoenix, Arizona temperature profiles, a city with extreme temperatures and a rapidly expanding infrastructure. By end-of-century under hotter futures there are projected to be 1%–5% more pump failures, 2%–5% more PVC pipe failures, and 3%–7% more iron pipe failures (RCP 4.5–8.5) than a baseline historical temperature profile. Service outages, which constitute inadequate pressure for domestic and commercial use are projected to increase by 16%–26% above the baseline under maximum temperature conditions. The exceedance of baseline failures, when compounded across a large metro region, reveals potential challenges formore »