The genus Rosenbergiella is one of the most frequent bacterial inhabitants of flowers and a usual member of the insect microbiota worldwide. To date, there is only one publicly available Rosenbergiella genome, corresponding to the type strain of Rosenbergiella nectarea (8N4 T ), which precludes a detailed analysis of intra-genus phylogenetic relationships. In this study, we obtained draft genomes of the type strains of the other Rosenbergiella species validly published to date ( R. australiborealis , R. collisarenosi and R. epipactidis ) and 23 additional isolates of flower and insect origin. Isolate S61 T , retrieved from the nectar of an Antirrhinum sp. flower collected in southern Spain, displayed low average nucleotide identity (ANI) and in silico DNA–DNA hybridization (isDDH) values when compared with other Rosenbergiella members (≤86.5 and ≤29.8 %, respectively). Similarly, isolate JB07 T , which was obtained from the floral nectar of Metrosideros polymorpha plants in Hawaii (USA) had ≤95.7 % ANI and ≤64.1 % isDDH with other Rosenbergiella isolates. Therefore, our results support the description of two new Rosenbergiella species for which we propose the names Rosenbergiella gaditana sp. nov. (type strain: S61 T =NCCB 100789 T =DSM 111181 T ) and Rosenbergiella metrosideri sp. nov. (JB07 T =NCCB 100888 T =LMG 32616 T ). Additionally, some R. epipactidis and R. nectarea isolates showed isDDH values<79 % with other conspecific isolates, which suggests that these species include subspecies for which we propose the names Rosenbergiella epipactidis subsp. epipactidis subsp. nov. (S256 T =CECT 8502 T =LMG 27956 T ), Rosenbergiella epipactidis subsp. californiensis subsp. nov. (FR72 T =NCCB 100898 T =LMG 32786 T ), Rosenbergiella epipactidis subsp. japonicus subsp. nov. (K24 T =NCCB 100924 T =LMG 32785 T ), Rosenbergiella nectarea subsp. nectarea subsp. nov. (8N4 T = DSM 24150 T = LMG 26121 T ) and Rosenbergiella nectarea subsp. apis subsp. nov. (B1A T =NCCB 100810 T = DSM 111763 T ), respectively. Finally, we present the first phylogenomic analysis of the genus Rosenbergiella and update the formal description of the species R. australiborealis , R. collisarenosi , R. epipactidis and R. nectarea based on new genomic and phenotypic information.
more »
« less
Complete Genome Sequences of Eight Streptococcus equi subsp. zooepidemicus Strains Isolated from Mares in Estrus with Endometritis
ABSTRACT Eight isolates of Streptococcus equi subsp. zooepidemicus were isolated from mares with clinical cases of endometritis. S. equi subsp. zooepidemicus strains were chosen for sequencing based on differing levels of biofilm production in vitro . Using Illumina short-read sequencing in conjunction with MinION sequencing, we report the genomes of eight isolates.
more »
« less
- Award ID(s):
- 1450032
- PAR ID:
- 10347169
- Editor(s):
- Dunning Hotopp, Julie C.
- Date Published:
- Journal Name:
- Microbiology Resource Announcements
- Volume:
- 10
- Issue:
- 26
- ISSN:
- 2576-098X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT In recent years, considerable progress has been made in topologically and functionally characterizing integral outer membrane proteins (OMPs) of Treponema pallidum subspecies pallidum , the syphilis spirochete, and identifying its surface-exposed β-barrel domains. Extracellular loops in OMPs of Gram-negative bacteria are known to be highly variable. We examined the sequence diversity of β-barrel-encoding regions of tprC , tprD , and bamA in 31 specimens from Cali, Colombia; San Francisco, California; and the Czech Republic and compared them to allelic variants in the 41 reference genomes in the NCBI database. To establish a phylogenetic framework, we used T. pallidum 0548 ( tp0548 ) genotyping and tp0558 sequences to assign strains to the Nichols or SS14 clades. We found that (i) β-barrels in clinical strains could be grouped according to allelic variants in T. pallidum subsp. pallidum reference genomes; (ii) for all three OMP loci, clinical strains within the Nichols or SS14 clades often harbored β-barrel variants that differed from the Nichols and SS14 reference strains; and (iii) OMP variable regions often reside in predicted extracellular loops containing B-cell epitopes. On the basis of structural models, nonconservative amino acid substitutions in predicted transmembrane β-strands of T. pallidum repeat C (TprC) and TprD2 could give rise to functional differences in their porin channels. OMP profiles of some clinical strains were mosaics of different reference strains and did not correlate with results from enhanced molecular typing. Our observations suggest that human host selection pressures drive T. pallidum subsp. pallidum OMP diversity and that genetic exchange contributes to the evolutionary biology of T. pallidum subsp. pallidum . They also set the stage for topology-based analysis of antibody responses to OMPs and help frame strategies for syphilis vaccine development. IMPORTANCE Despite recent progress characterizing outer membrane proteins (OMPs) of Treponema pallidum , little is known about how their surface-exposed, β-barrel-forming domains vary among strains circulating within high-risk populations. In this study, sequences for the β-barrel-encoding regions of three OMP loci, tprC , tprD , and bamA , in T. pallidum subsp. pallidum isolates from a large number of patient specimens from geographically disparate sites were examined. Structural models predict that sequence variation within β-barrel domains occurs predominantly within predicted extracellular loops. Amino acid substitutions in predicted transmembrane strands that could potentially affect porin channel function were also noted. Our findings suggest that selection pressures exerted within human populations drive T. pallidum subsp. pallidum OMP diversity and that recombination at OMP loci contributes to the evolutionary biology of syphilis spirochetes. These results also set the stage for topology-based analysis of antibody responses that promote clearance of T. pallidum subsp. pallidum and frame strategies for vaccine development based upon conserved OMP extracellular loops.more » « less
-
Miller, Todd (Ed.)Planktothrix agardhii is a filamentous cyanobacterial species that dominates harmful algal blooms in Sandusky Bay, Lake Erie and other freshwater basins across the world. P . agardhii isolates were obtained from early (June) blooms via single filament isolation; eight have been characterized from 2016, and 12 additional isolates have been characterized from 2018 for a total of 20 new cultures. These novel isolates were processed for genomic sequencing, where reads were used to generate scaffolds and contigs which were annotated with DIAMOND BLAST hit, Pfam, and GO. Analyses include whole genome alignment to generate phylogenetic trees and comparison of genetic rearrangements between isolates. Nitrogen acquisition and metabolism was compared across isolates. Secondary metabolite production was genetically explored including microcystins, two types of aeruginosin clusters, anabaenopeptins, cyanopeptolins, microviridins, and prenylagaramides. Two common and 4 unique CRISPR-cas islands were analyzed for similar sequences across all isolates and against the known Planktothri x-specific cyanophage, PaV-LD. Overall, the uniqueness of each genome from Planktothrix blooms sampled from the same site and at similar times belies the unexplored diversity of this genus.more » « less
-
Staphylococcus aureus are human facultative pathogenic bacteria and can be found as contaminants in the environment. The aim of our study was to determine whether methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) isolated from coastal beach and river waters, anchialine pools, sand, and wastewater on the island of Hawaiʻi, Hawaiʻi, are a potential health risk. Samples were collected from three regions on Hawaiʻi Island from July to December 2020 during the COVID-19 pandemic and were characterized using whole-genome sequencing (WGS). From WGS data, multilocus sequence typing (MLST), SCCmec type, antimicrobial resistance genes, virulence factors, and plasmids were identified. Of the 361 samples, 98.1% were positive for Staphylococcus spp. and 7.2% were S. aureus positive (n = 26); nine MRSA and 27 MSSA strains were characterized; multiple isolates were chosen from the same sample in two sand and seven coastal beach water samples. The nine MRSA isolates were multi-drug resistant (6–9 genes) sequence type (ST) 8, clonal complex (CC) 8, SCCmec type IVa (USA300 clone), and were clonally related (0–16 SNP differences), and carried 16–19 virulence factors. The 27 MSSA isolates were grouped into eight CCs and 12 STs. Seventy-eight percent of the MSSA isolates carried 1–5 different antibiotic resistance genes and carried 5–19 virulence factors. We found S. aureus in coastal beach and river waters, anchialine pools, and sand at locations with limited human activity on the island of Hawaiʻi. This may be a public health hazard.more » « less
-
Engel, P (Ed.)Abstract Lactobacillaceae are an important family of lactic acid bacteria that play key roles in the gut microbiome of many animal species. In the honey bee (Apis mellifera) gut microbiome, many species of Lactobacillaceae are found, and there is functionally important strain-level variation in the bacteria. In this study, we completed whole-genome sequencing of 3 unique Lactobacillaceae isolates collected from hives in Virginia, USA. Using 107 genomes of known bee-associated Lactobacillaceae and Limosilactobacillus reuteri as an outgroup, the phylogenetics of the 3 isolates was assessed, and these isolates were identified as novel strains of Apilactobacillus kunkeei, Lactobacillus kullabergensis, and Bombilactobacillus mellis. Genome rearrangements, conserved orthologous genes (COG) categories and potential prophage regions were identified across the 3 novel strains. The new A. kunkeei strain was enriched in genes related to replication, recombination and repair, the L. kullabergensis strain was enriched for carbohydrate transport, and the B. mellis strain was enriched in transcription or transcriptional regulation and in some genes with unknown functions. Prophage regions were identified in the A. kunkeei and L. kullabergensis isolates. These new bee-associated strains add to our growing knowledge of the honey bee gut microbiome, and to Lactobacillaceae genomics more broadly.more » « less
An official website of the United States government

